--- library_name: transformers base_model: - PleIAs/Baguettotron --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [PleIAs/Baguettotron](https://huggingface.co/PleIAs/Baguettotron). ### Example usage: ```python from transformers import pipeline model_id = "yujiepan/baguettotron-tiny-random" pipe = pipeline( "text-generation", model=model_id, device="cuda", trust_remote_code=True, max_new_tokens=3, ) print(pipe("Hello World!")) ``` ### Codes to create this repo: ```python import torch from transformers import ( AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed, ) source_model_id = "PleIAs/Baguettotron" save_folder = "/tmp/yujiepan/baguettotron-tiny-random" tokenizer = AutoTokenizer.from_pretrained( source_model_id, trust_remote_code=True, ) tokenizer.chat_template = "{% for m in messages %}<|im_start|>{{ m['role'] }}\n{{ m['content'] }}<|im_end|>\n{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n\n{% endif %}" tokenizer.eos_token = "<|im_end|>" tokenizer.bos_token = "<|im_start|>" tokenizer.stop_token = "<|im_end|>" tokenizer.save_pretrained(save_folder) config = AutoConfig.from_pretrained( source_model_id, trust_remote_code=True, ) config.hidden_size = 8 config.intermediate_size = 64 config.num_attention_heads = 16 config.num_key_value_heads = 8 config.head_dim = 32 config.num_hidden_layers = 2 model = AutoModelForCausalLM.from_config( config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) ``` ### Printing the model: ```text LlamaForCausalLM( (model): LlamaModel( (embed_tokens): Embedding(65536, 8) (layers): ModuleList( (0-1): 2 x LlamaDecoderLayer( (self_attn): LlamaAttention( (q_proj): Linear(in_features=8, out_features=512, bias=False) (k_proj): Linear(in_features=8, out_features=256, bias=False) (v_proj): Linear(in_features=8, out_features=256, bias=False) (o_proj): Linear(in_features=512, out_features=8, bias=False) ) (mlp): LlamaMLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): SiLUActivation() ) (input_layernorm): LlamaRMSNorm((8,), eps=1e-05) (post_attention_layernorm): LlamaRMSNorm((8,), eps=1e-05) ) ) (norm): LlamaRMSNorm((8,), eps=1e-05) (rotary_emb): LlamaRotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=65536, bias=False) ) ```