ppo Agent playing Huggy

This is a trained model of a ppo agent playing Huggy using the Unity ML-Agents Library.

Huggy PPO Agent - Training Documentation

Model Overview

Huggy is a PPO (Proximal Policy Optimization) agent trained using Unity ML-Agents toolkit. This is a custom Unity environment where the agent learns to perform specific behaviors over 2 million training steps.

Training Environment

  • Environment: Unity ML-Agents custom environment "Huggy"
  • ML-Agents Version: 1.2.0.dev0
  • ML-Agents Envs: 1.2.0.dev0
  • Communicator API: 1.5.0
  • PyTorch Version: 2.7.1+cu126
  • Unity Package Version: 2.2.1-exp.1

Training Configuration

PPO Hyperparameters

  • Batch Size: 2,048
  • Buffer Size: 20,480
  • Learning Rate: 0.0003 (linear schedule)
  • Beta (entropy regularization): 0.005 (linear schedule)
  • Epsilon (PPO clip parameter): 0.2 (linear schedule)
  • Lambda (GAE parameter): 0.95
  • Number of Epochs: 3
  • Shared Critic: False

Network Architecture

  • Normalization: Enabled
  • Hidden Units: 512
  • Number of Layers: 3
  • Visual Encoding Type: Simple
  • Memory: None
  • Goal Conditioning Type: Hyper
  • Deterministic: False

Reward Configuration

  • Reward Type: Extrinsic
  • Gamma (discount factor): 0.995
  • Reward Strength: 1.0
  • Reward Network Hidden Units: 128
  • Reward Network Layers: 2

Training Parameters

  • Maximum Steps: 2,000,000
  • Time Horizon: 1,000
  • Summary Frequency: 50,000 steps
  • Checkpoint Interval: 200,000 steps
  • Keep Checkpoints: 15
  • Threaded Training: False

Training Performance

Performance Progression

The agent showed steady improvement throughout training:

Early Training (0-200k steps):

  • Step 50k: Mean Reward = 1.840 ± 0.925
  • Step 100k: Mean Reward = 2.747 ± 1.096
  • Step 150k: Mean Reward = 3.031 ± 1.174
  • Step 200k: Mean Reward = 3.538 ± 1.370

Mid Training (200k-1M steps):

  • Performance stabilized around 3.6-3.9 mean reward
  • Peak performance at 500k steps: 3.873 ± 1.783

Late Training (1M-2M steps):

  • Consistent performance around 3.5-3.8 mean reward
  • Final performance at 2M steps: 3.718 ± 2.132

Key Performance Metrics

  • Training Duration: 2,350.439 seconds (~39 minutes)
  • Final Mean Reward: 3.718
  • Final Standard Deviation: 2.132
  • Peak Mean Reward: 3.873 (at 500k steps)
  • Lowest Standard Deviation: 0.925 (at 50k steps)

Training Characteristics

Learning Curve Analysis

  1. Rapid Initial Learning: Significant improvement in first 200k steps (1.84 → 3.54)
  2. Plateau Phase: Performance stabilized between 200k-2M steps
  3. Variance Increase: Standard deviation increased over time, indicating more diverse behavior patterns

Model Checkpoints

Regular ONNX model exports were created every 200k steps:

  • Huggy-199933.onnx
  • Huggy-399938.onnx
  • Huggy-599920.onnx
  • Huggy-799966.onnx
  • Huggy-999748.onnx
  • Huggy-1199265.onnx
  • Huggy-1399932.onnx
  • Huggy-1599985.onnx
  • Huggy-1799997.onnx
  • Huggy-1999614.onnx
  • Final Model: Huggy-2000364.onnx

Technical Implementation

Training Framework

  • Unity ML-Agents with PPO algorithm
  • Custom Unity environment integration
  • ONNX model export for deployment
  • Real-time training monitoring

Model Architecture Details

  • Multi-layer perceptron with 3 hidden layers
  • 512 hidden units per layer
  • Input normalization enabled
  • Separate actor-critic networks (shared_critic = False)
  • Hypernetwork goal conditioning

Reward Signal Processing

  • Single extrinsic reward signal
  • Discount factor of 0.995 for long-term planning
  • Dedicated reward network with 2 layers and 128 units

Performance Insights

Strengths

  • Consistent learning progression
  • Stable final performance around 3.7 mean reward
  • Successful completion of 2M training steps
  • Regular checkpoint generation for model versioning

Observations

  • Standard deviation increased over training, suggesting the agent learned more diverse strategies
  • Performance plateau after 200k steps indicates the task complexity was well-matched to the training duration
  • The agent maintained stable performance without significant degradation

Training Efficiency

  • Steps per Second: ~851 steps/second average
  • Episodes per Checkpoint: Approximately 200-250 episodes per checkpoint
  • Memory Usage: Efficient with 20,480 buffer size and 1,000 time horizon

This training session demonstrates successful PPO implementation in a Unity environment with consistent performance and robust learning characteristics.

Huggy PPO Agent - Usage Guide

Prerequisites

Before using the Huggy model, ensure you have the following installed:

# Install Unity ML-Agents
pip install mlagents==1.2.0

# Install required dependencies
pip install torch==2.7.1
pip install onnx
pip install onnxruntime

Model Files

After training, you'll have these key files:

  • Huggy.onnx - The trained model (final version)
  • Huggy-2000364.onnx - Final checkpoint model
  • config.yaml - Training configuration file
  • training logs - Performance metrics and tensorboard data

Loading and Using the Model

Method 1: Using ML-Agents Python API

from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.base_env import ActionTuple
import numpy as np

# Load the Unity environment
env = UnityEnvironment(file_name="path/to/your/huggy_environment")

# Reset the environment
env.reset()

# Get behavior specs
behavior_names = list(env.behavior_specs.keys())
behavior_name = behavior_names[0]  # "Huggy"
spec = env.behavior_specs[behavior_name]

print(f"Observation space: {spec.observation_specs}")
print(f"Action space: {spec.action_spec}")

Method 2: Using ONNX Runtime for Inference

import onnxruntime as ort
import numpy as np

# Load the trained ONNX model
model_path = "results/Huggy2/Huggy.onnx"
ort_session = ort.InferenceSession(model_path)

# Get model input/output info
input_name = ort_session.get_inputs()[0].name
output_name = ort_session.get_outputs()[0].name

def predict_action(observation):
    """
    Predict action using the trained model
    """
    # Prepare observation (ensure correct shape and normalization)
    obs_input = np.array(observation, dtype=np.float32)
    
    # Run inference
    action_probs = ort_session.run([output_name], {input_name: obs_input})
    
    # Sample action from probabilities or take deterministic action
    action = np.argmax(action_probs[0])  # Deterministic
    # OR: action = np.random.choice(len(action_probs[0]), p=action_probs[0])  # Stochastic
    
    return action

Method 3: Running Trained Agent in Unity

from mlagents_envs.environment import UnityEnvironment
from mlagents_envs.base_env import ActionTuple
import onnxruntime as ort
import numpy as np

# Initialize environment and model
env = UnityEnvironment(file_name="HuggyEnvironment")
ort_session = ort.InferenceSession("results/Huggy2/Huggy.onnx")

# Get behavior name
behavior_names = list(env.behavior_specs.keys())
behavior_name = behavior_names[0]

# Run episodes
for episode in range(10):
    env.reset()
    decision_steps, terminal_steps = env.get_steps(behavior_name)
    
    episode_reward = 0
    step_count = 0
    
    while len(decision_steps) > 0:
        # Get observations
        observations = decision_steps.obs[0]
        
        # Predict actions using trained model
        actions = []
        for obs in observations:
            action_probs = ort_session.run(None, {"obs_0": obs.reshape(1, -1)})
            action = np.argmax(action_probs[0])
            actions.append(action)
        
        # Send actions to environment
        action_tuple = ActionTuple(discrete=np.array([actions]))
        env.set_actions(behavior_name, action_tuple)
        
        # Step environment
        env.step()
        decision_steps, terminal_steps = env.get_steps(behavior_name)
        
        # Track rewards
        if len(terminal_steps) > 0:
            episode_reward += terminal_steps.reward[0]
            break
        if len(decision_steps) > 0:
            episode_reward += decision_steps.reward[0]
        
        step_count += 1
    
    print(f"Episode {episode + 1}: Reward = {episode_reward:.3f}, Steps = {step_count}")

env.close()

Evaluation and Testing

Performance Evaluation Script

import numpy as np
from collections import defaultdict

def evaluate_model(env, model_session, num_episodes=100):
    """
    Evaluate the trained model performance
    """
    results = {
        'rewards': [],
        'episode_lengths': [],
        'success_rate': 0
    }
    
    behavior_name = list(env.behavior_specs.keys())[0]
    
    for episode in range(num_episodes):
        env.reset()
        decision_steps, terminal_steps = env.get_steps(behavior_name)
        
        episode_reward = 0
        episode_length = 0
        
        while len(decision_steps) > 0:
            # Get actions from model
            observations = decision_steps.obs[0]
            actions = []
            
            for obs in observations:
                action_probs = model_session.run(None, {"obs_0": obs.reshape(1, -1)})
                action = np.argmax(action_probs[0])  # Deterministic policy
                actions.append(action)
            
            # Step environment
            action_tuple = ActionTuple(discrete=np.array([actions]))
            env.set_actions(behavior_name, action_tuple)
            env.step()
            
            decision_steps, terminal_steps = env.get_steps(behavior_name)
            episode_length += 1
            
            # Check for episode termination
            if len(terminal_steps) > 0:
                episode_reward = terminal_steps.reward[0]
                break
        
        results['rewards'].append(episode_reward)
        results['episode_lengths'].append(episode_length)
    
    # Calculate statistics
    mean_reward = np.mean(results['rewards'])
    std_reward = np.std(results['rewards'])
    mean_length = np.mean(results['episode_lengths'])
    
    print(f"Evaluation Results ({num_episodes} episodes):")
    print(f"Mean Reward: {mean_reward:.3f} ± {std_reward:.3f}")
    print(f"Mean Episode Length: {mean_length:.1f}")
    print(f"Min Reward: {np.min(results['rewards']):.3f}")
    print(f"Max Reward: {np.max(results['rewards']):.3f}")
    
    return results

Deployment Options

Option 1: Unity Standalone Build

  1. Build your Unity environment with the trained model
  2. The model will automatically use the ONNX file for inference
  3. Deploy as a standalone executable

Option 2: Python Integration

# For integration into larger Python applications
class HuggyAgent:
    def __init__(self, model_path):
        self.session = ort.InferenceSession(model_path)
        self.input_name = self.session.get_inputs()[0].name
        
    def act(self, observation):
        """Get action from observation"""
        obs_input = np.array(observation, dtype=np.float32).reshape(1, -1)
        action_probs = self.session.run(None, {self.input_name: obs_input})
        return np.argmax(action_probs[0])
    
    def act_stochastic(self, observation):
        """Get stochastic action from observation"""
        obs_input = np.array(observation, dtype=np.float32).reshape(1, -1)
        action_probs = self.session.run(None, {self.input_name: obs_input})[0]
        return np.random.choice(len(action_probs), p=action_probs)

# Usage
agent = HuggyAgent("results/Huggy2/Huggy.onnx")
action = agent.act(current_observation)

Option 3: Web Deployment

# For web applications using Flask/FastAPI
from flask import Flask, request, jsonify
import onnxruntime as ort
import numpy as np

app = Flask(__name__)
model = ort.InferenceSession("Huggy.onnx")

@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    observation = np.array(data['observation'], dtype=np.float32)
    
    action_probs = model.run(None, {"obs_0": observation.reshape(1, -1)})
    action = int(np.argmax(action_probs[0]))
    
    return jsonify({'action': action, 'confidence': float(np.max(action_probs[0]))})

if __name__ == '__main__':
    app.run(debug=True)

Troubleshooting

Common Issues

  1. ONNX Model Loading Errors

    • Ensure ONNX runtime version compatibility
    • Check model file path and permissions
  2. Unity Environment Connection

    • Verify Unity environment executable path
    • Check port availability (default: 5004)
  3. Observation Shape Mismatches

    • Ensure observation preprocessing matches training
    • Check input normalization requirements
  4. Performance Issues

    • Use deterministic policy for consistent results
    • Consider batch inference for multiple agents

Performance Optimization

# Batch processing for multiple agents
def batch_predict(model_session, observations):
    """Process multiple observations at once"""
    batch_obs = np.array(observations, dtype=np.float32)
    action_probs = model_session.run(None, {"obs_0": batch_obs})
    actions = np.argmax(action_probs[0], axis=1)
    return actions

This guide provides comprehensive instructions for deploying and using your trained Huggy PPO agent in various scenarios, from simple testing to production deployment.

Downloads last month
54
Video Preview
loading