all-MiniLM-L6-v4-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the pairs_three_scores_v4 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'buttons lounge set',
    'crispy fried shrimp wrap',
    'cold americano',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, -0.3910, -0.3160],
#         [-0.3910,  1.0000,  0.9032],
#         [-0.3160,  0.9032,  1.0000]])

Training Details

Training Dataset

pairs_three_scores_v4

  • Dataset: pairs_three_scores_v4 at dee4115
  • Size: 9,471,735 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 5.71 tokens
    • max: 43 tokens
    • min: 3 tokens
    • mean: 6.37 tokens
    • max: 110 tokens
    • min: 0.0
    • mean: 0.45
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    christmas box multiple purposes bowl 0.6536345183849335
    linen kimono winter sweatshirts 0.5329802930355072
    lanalou flashcards squatting leggings 0.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Evaluation Dataset

pairs_three_scores_v4

  • Dataset: pairs_three_scores_v4 at dee4115
  • Size: 47,597 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 3 tokens
    • mean: 5.85 tokens
    • max: 119 tokens
    • min: 3 tokens
    • mean: 5.94 tokens
    • max: 115 tokens
    • min: 0.0
    • mean: 0.43
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    back pockets joggers nourishing face sheet mask 0.0
    women water toy colorful print mat 0.0
    handmade trays 6 deep plates 0.6035053730010986
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss
0.0007 100 11.2772
0.0014 200 11.2045
0.0020 300 11.1008
0.0027 400 10.8444
0.0034 500 10.6532
0.0041 600 10.6076
0.0047 700 9.8378
0.0054 800 9.333
0.0061 900 9.0476
0.0068 1000 8.9552
0.0074 1100 8.3106
0.0081 1200 8.0685
0.0088 1300 7.7457
0.0095 1400 7.4884
0.0101 1500 7.2935
0.0108 1600 7.0525
0.0115 1700 6.9246
0.0122 1800 6.7854
0.0128 1900 6.6203
0.0135 2000 6.5445
0.0142 2100 6.4282
0.0149 2200 6.4666
0.0155 2300 6.3606
0.0162 2400 6.3206
0.0169 2500 6.3462
0.0176 2600 6.275
0.0182 2700 6.2399
0.0189 2800 6.1829
0.0196 2900 6.1858
0.0203 3000 6.0981
0.0209 3100 6.1599
0.0216 3200 6.0871
0.0223 3300 6.0986
0.0230 3400 6.0525
0.0236 3500 6.0007
0.0243 3600 6.0141
0.0250 3700 6.0264
0.0257 3800 6.0122
0.0264 3900 5.9951
0.0270 4000 5.9811
0.0277 4100 5.9728
0.0284 4200 6.0579
0.0291 4300 5.8964
0.0297 4400 6.0182
0.0304 4500 5.9026
0.0311 4600 5.9503
0.0318 4700 5.9141
0.0324 4800 5.9996
0.0331 4900 6.0455
0.0338 5000 5.8218
0.0345 5100 5.9668
0.0351 5200 5.8882
0.0358 5300 5.8238
0.0365 5400 5.8314
0.0372 5500 5.844
0.0378 5600 5.8349
0.0385 5700 5.7913
0.0392 5800 5.8043
0.0399 5900 5.7953
0.0405 6000 5.8511
0.0412 6100 5.7745
0.0419 6200 5.8096
0.0426 6300 5.8099
0.0432 6400 5.8212
0.0439 6500 5.7664
0.0446 6600 5.8258
0.0453 6700 5.8041
0.0459 6800 5.8314
0.0466 6900 5.7278
0.0473 7000 5.7442
0.0480 7100 5.7527
0.0486 7200 5.7967
0.0493 7300 5.7709
0.0500 7400 5.7246
0.0507 7500 5.7395
0.0514 7600 5.6816
0.0520 7700 5.7243
0.0527 7800 5.6907
0.0534 7900 5.6183
0.0541 8000 5.683
0.0547 8100 5.7337
0.0554 8200 5.7362
0.0561 8300 5.6575
0.0568 8400 5.6788
0.0574 8500 5.7192
0.0581 8600 5.7224
0.0588 8700 5.7161
0.0595 8800 5.6479
0.0601 8900 5.608
0.0608 9000 5.6661
0.0615 9100 5.6845
0.0622 9200 5.6438
0.0628 9300 5.607
0.0635 9400 5.5686
0.0642 9500 5.657
0.0649 9600 5.7203
0.0655 9700 5.6961
0.0662 9800 5.713
0.0669 9900 5.6134
0.0676 10000 5.6128
0.0682 10100 5.6158
0.0689 10200 5.5794
0.0696 10300 5.6728
0.0703 10400 5.6101
0.0709 10500 5.5899
0.0716 10600 5.6118
0.0723 10700 5.6399
0.0730 10800 5.519
0.0737 10900 5.5481
0.0743 11000 5.6637
0.0750 11100 5.5567
0.0757 11200 5.5738
0.0764 11300 5.5703
0.0770 11400 5.5796
0.0777 11500 5.5475
0.0784 11600 5.5255
0.0791 11700 5.5157
0.0797 11800 5.5204
0.0804 11900 5.6315
0.0811 12000 5.5876
0.0818 12100 5.4836
0.0824 12200 5.5909
0.0831 12300 5.5746
0.0838 12400 5.4464
0.0845 12500 5.4335
0.0851 12600 5.4754
0.0858 12700 5.5356
0.0865 12800 5.5325
0.0872 12900 5.5575
0.0878 13000 5.4516
0.0885 13100 5.5869
0.0892 13200 5.5381
0.0899 13300 5.508
0.0905 13400 5.4274
0.0912 13500 5.4552
0.0919 13600 5.5884
0.0926 13700 5.5348
0.0932 13800 5.444
0.0939 13900 5.4749
0.0946 14000 5.4637
0.0953 14100 5.5203
0.0959 14200 5.5285
0.0966 14300 5.4755
0.0973 14400 5.5051
0.0980 14500 5.4729
0.0987 14600 5.3955
0.0993 14700 5.5881
0.1000 14800 5.4181
0.1007 14900 5.3651
0.1014 15000 5.4613
0.1020 15100 5.5557
0.1027 15200 5.4996
0.1034 15300 5.3881
0.1041 15400 5.4835
0.1047 15500 5.5401
0.1054 15600 5.5961
0.1061 15700 5.4128
0.1068 15800 5.3917
0.1074 15900 5.5711
0.1081 16000 5.4357
0.1088 16100 5.4621
0.1095 16200 5.47
0.1101 16300 5.4925
0.1108 16400 5.3248
0.1115 16500 5.4251
0.1122 16600 5.4021
0.1128 16700 5.5096
0.1135 16800 5.4241
0.1142 16900 5.3936
0.1149 17000 5.3079
0.1155 17100 5.4653
0.1162 17200 5.4459
0.1169 17300 5.4444
0.1176 17400 5.3659
0.1182 17500 5.3743
0.1189 17600 5.3234
0.1196 17700 5.4278
0.1203 17800 5.4297
0.1209 17900 5.3561
0.1216 18000 5.3988
0.1223 18100 5.3245
0.1230 18200 5.3588
0.1237 18300 5.3977
0.1243 18400 5.2909
0.1250 18500 5.3745
0.1257 18600 5.3337
0.1264 18700 5.4919
0.1270 18800 5.2805
0.1277 18900 5.3844
0.1284 19000 5.4128
0.1291 19100 5.2554
0.1297 19200 5.408
0.1304 19300 5.2776
0.1311 19400 5.6267
0.1318 19500 5.3124
0.1324 19600 5.3846
0.1331 19700 5.384
0.1338 19800 5.3246
0.1345 19900 5.3179
0.1351 20000 5.3278
0.1358 20100 5.3834
0.1365 20200 5.3308
0.1372 20300 5.357
0.1378 20400 5.3896
0.1385 20500 5.2867
0.1392 20600 5.2974
0.1399 20700 5.313
0.1405 20800 5.3967
0.1412 20900 5.2301
0.1419 21000 5.4356
0.1426 21100 5.2693
0.1432 21200 5.3217
0.1439 21300 5.2899
0.1446 21400 5.3245
0.1453 21500 5.2185
0.1459 21600 5.2687
0.1466 21700 5.2723
0.1473 21800 5.4166
0.1480 21900 5.2839
0.1487 22000 5.2795
0.1493 22100 5.1613
0.1500 22200 5.3687
0.1507 22300 5.202
0.1514 22400 5.2485
0.1520 22500 5.2115
0.1527 22600 5.2436
0.1534 22700 5.4055
0.1541 22800 5.2773
0.1547 22900 5.2959
0.1554 23000 5.3102
0.1561 23100 5.3255
0.1568 23200 5.2784
0.1574 23300 5.1271
0.1581 23400 5.1952
0.1588 23500 5.3454
0.1595 23600 5.2846
0.1601 23700 5.2996
0.1608 23800 5.1608
0.1615 23900 5.2627
0.1622 24000 5.2594
0.1628 24100 5.2198
0.1635 24200 5.2236
0.1642 24300 5.175
0.1649 24400 5.3334
0.1655 24500 5.2199
0.1662 24600 5.1433
0.1669 24700 5.1984
0.1676 24800 5.2249
0.1682 24900 5.2563
0.1689 25000 5.2767
0.1696 25100 5.2708
0.1703 25200 5.1738
0.1710 25300 5.3836
0.1716 25400 5.292
0.1723 25500 5.2074
0.1730 25600 5.0917
0.1737 25700 5.2109
0.1743 25800 5.2041
0.1750 25900 5.2541
0.1757 26000 5.2361
0.1764 26100 5.377
0.1770 26200 5.1856
0.1777 26300 5.2809
0.1784 26400 5.2775
0.1791 26500 5.2574
0.1797 26600 5.2671
0.1804 26700 5.104
0.1811 26800 5.33
0.1818 26900 5.1559
0.1824 27000 5.0913
0.1831 27100 5.135
0.1838 27200 5.1912
0.1845 27300 5.1868
0.1851 27400 5.2395
0.1858 27500 5.1384
0.1865 27600 5.2198
0.1872 27700 5.2135
0.1878 27800 5.3694
0.1885 27900 5.2076
0.1892 28000 5.1509
0.1899 28100 5.1497
0.1905 28200 5.1712
0.1912 28300 5.1797
0.1919 28400 5.2396
0.1926 28500 5.2325
0.1932 28600 5.1888
0.1939 28700 5.2095
0.1946 28800 5.1883
0.1953 28900 5.1459
0.1960 29000 5.1744
0.1966 29100 5.1556
0.1973 29200 5.3217
0.1980 29300 5.2099
0.1987 29400 5.1099
0.1993 29500 5.2021
0.2000 29600 5.1876
0.2007 29700 5.1511
0.2014 29800 5.2566
0.2020 29900 5.1873
0.2027 30000 5.0897
0.2034 30100 5.1176
0.2041 30200 5.1516
0.2047 30300 5.0758
0.2054 30400 5.1937
0.2061 30500 5.2929
0.2068 30600 5.1915
0.2074 30700 5.3714
0.2081 30800 5.1536
0.2088 30900 5.0422
0.2095 31000 5.2734
0.2101 31100 5.1468
0.2108 31200 5.3353
0.2115 31300 5.2293
0.2122 31400 5.1361
0.2128 31500 5.2482
0.2135 31600 5.2306
0.2142 31700 5.2098
0.2149 31800 5.1354
0.2155 31900 5.2223
0.2162 32000 5.0355
0.2169 32100 5.094
0.2176 32200 5.1195
0.2182 32300 5.1196
0.2189 32400 5.138
0.2196 32500 5.2377
0.2203 32600 5.1725
0.2210 32700 5.0781
0.2216 32800 5.18
0.2223 32900 5.1088
0.2230 33000 5.2161
0.2237 33100 5.1438
0.2243 33200 5.1116
0.2250 33300 5.1823
0.2257 33400 5.079
0.2264 33500 5.2694
0.2270 33600 5.1641
0.2277 33700 5.2138
0.2284 33800 5.1935
0.2291 33900 5.1723
0.2297 34000 5.1072
0.2304 34100 5.186
0.2311 34200 5.0348
0.2318 34300 5.2384
0.2324 34400 5.1755
0.2331 34500 5.0979
0.2338 34600 5.0663
0.2345 34700 5.0989
0.2351 34800 5.2739
0.2358 34900 5.1265
0.2365 35000 5.1322
0.2372 35100 5.2121
0.2378 35200 5.1385
0.2385 35300 5.2434
0.2392 35400 5.0476
0.2399 35500 5.2256
0.2405 35600 5.2383
0.2412 35700 5.2071
0.2419 35800 5.0999
0.2426 35900 5.1044
0.2432 36000 5.1613
0.2439 36100 5.1462
0.2446 36200 5.0728
0.2453 36300 5.0023
0.2460 36400 5.1733
0.2466 36500 5.3145
0.2473 36600 5.0838
0.2480 36700 5.1461
0.2487 36800 5.1862
0.2493 36900 5.188
0.2500 37000 5.1184
0.2507 37100 5.0856
0.2514 37200 5.2862
0.2520 37300 4.9814
0.2527 37400 5.19
0.2534 37500 5.0314
0.2541 37600 5.1364
0.2547 37700 5.1157
0.2554 37800 5.114
0.2561 37900 5.1727
0.2568 38000 4.9733
0.2574 38100 5.0293
0.2581 38200 5.0877
0.2588 38300 5.219
0.2595 38400 5.0985
0.2601 38500 5.2359
0.2608 38600 5.1565
0.2615 38700 5.0726
0.2622 38800 5.0726
0.2628 38900 5.0614
0.2635 39000 5.2868
0.2642 39100 5.0182
0.2649 39200 5.3397
0.2655 39300 5.0637
0.2662 39400 5.1195
0.2669 39500 5.2523
0.2676 39600 5.1122
0.2683 39700 5.0181
0.2689 39800 5.1299
0.2696 39900 5.1427
0.2703 40000 5.0565
0.2710 40100 5.26
0.2716 40200 5.0041
0.2723 40300 5.0455
0.2730 40400 5.1708
0.2737 40500 5.2165
0.2743 40600 5.1393
0.2750 40700 5.0108
0.2757 40800 5.0889
0.2764 40900 5.1834
0.2770 41000 5.028
0.2777 41100 4.9961
0.2784 41200 5.1672
0.2791 41300 5.0564
0.2797 41400 5.081
0.2804 41500 5.1974
0.2811 41600 5.1264
0.2818 41700 5.1353
0.2824 41800 5.1746
0.2831 41900 5.1971
0.2838 42000 5.0538
0.2845 42100 5.0128
0.2851 42200 5.1144
0.2858 42300 4.9608
0.2865 42400 5.1669
0.2872 42500 5.0291
0.2878 42600 5.021
0.2885 42700 5.1213
0.2892 42800 5.1709
0.2899 42900 5.0978
0.2905 43000 5.1681
0.2912 43100 5.1087
0.2919 43200 5.1294
0.2926 43300 5.051
0.2933 43400 5.0416
0.2939 43500 5.0433
0.2946 43600 4.9924
0.2953 43700 5.1638
0.2960 43800 5.063
0.2966 43900 5.0403
0.2973 44000 4.9952
0.2980 44100 5.11
0.2987 44200 5.0319
0.2993 44300 5.1957
0.3000 44400 5.0856
0.3007 44500 4.9665
0.3014 44600 5.0926
0.3020 44700 4.9115
0.3027 44800 5.0353
0.3034 44900 5.1113
0.3041 45000 5.2239
0.3047 45100 5.0391
0.3054 45200 4.9572
0.3061 45300 5.1975
0.3068 45400 5.0444
0.3074 45500 5.0685
0.3081 45600 5.0488
0.3088 45700 5.0968
0.3095 45800 5.0757
0.3101 45900 5.0493
0.3108 46000 5.073
0.3115 46100 5.047
0.3122 46200 4.9862
0.3128 46300 5.0781
0.3135 46400 5.0331
0.3142 46500 5.056
0.3149 46600 5.0055
0.3155 46700 5.0088
0.3162 46800 5.0066
0.3169 46900 4.9467
0.3176 47000 5.2226
0.3183 47100 5.0494
0.3189 47200 5.0021
0.3196 47300 5.0008
0.3203 47400 5.1185
0.3210 47500 5.1898
0.3216 47600 5.0068
0.3223 47700 5.005
0.3230 47800 5.0591
0.3237 47900 5.0649
0.3243 48000 5.1205
0.3250 48100 5.065
0.3257 48200 4.911
0.3264 48300 5.1139
0.3270 48400 4.9509
0.3277 48500 5.0446
0.3284 48600 4.9778
0.3291 48700 5.1231
0.3297 48800 4.9543
0.3304 48900 5.0999
0.3311 49000 5.1623
0.3318 49100 5.0506
0.3324 49200 5.1689
0.3331 49300 5.0546
0.3338 49400 4.9665
0.3345 49500 5.0791
0.3351 49600 5.0729
0.3358 49700 4.88
0.3365 49800 5.0973
0.3372 49900 4.9499
0.3378 50000 4.9133
0.3385 50100 5.0726
0.3392 50200 5.1231
0.3399 50300 5.1781
0.3405 50400 5.0056
0.3412 50500 5.0575
0.3419 50600 4.99
0.3426 50700 5.0301
0.3433 50800 5.0807
0.3439 50900 5.0426
0.3446 51000 5.2096
0.3453 51100 5.0524
0.3460 51200 4.8141
0.3466 51300 5.0286
0.3473 51400 4.9065
0.3480 51500 5.0237
0.3487 51600 4.9762
0.3493 51700 4.9031
0.3500 51800 5.0163
0.3507 51900 5.0948
0.3514 52000 5.0748
0.3520 52100 5.1252
0.3527 52200 5.0668
0.3534 52300 5.0756
0.3541 52400 4.9194
0.3547 52500 5.0224
0.3554 52600 4.9381
0.3561 52700 5.084
0.3568 52800 5.1556
0.3574 52900 5.0096
0.3581 53000 4.9221
0.3588 53100 4.9921
0.3595 53200 4.9809
0.3601 53300 4.8309
0.3608 53400 4.99
0.3615 53500 5.0263
0.3622 53600 5.047
0.3628 53700 5.0267
0.3635 53800 5.0454
0.3642 53900 5.0048
0.3649 54000 5.1308
0.3656 54100 5.0573
0.3662 54200 5.0132
0.3669 54300 5.0754
0.3676 54400 5.0739
0.3683 54500 5.0495
0.3689 54600 4.9821
0.3696 54700 5.0457
0.3703 54800 5.0674
0.3710 54900 5.0398
0.3716 55000 4.9616
0.3723 55100 5.0519
0.3730 55200 5.1302
0.3737 55300 4.9325
0.3743 55400 4.9855
0.3750 55500 5.0143
0.3757 55600 4.9813
0.3764 55700 4.9939
0.3770 55800 4.9754
0.3777 55900 4.9555
0.3784 56000 5.0472
0.3791 56100 4.8199
0.3797 56200 5.0489
0.3804 56300 5.0116
0.3811 56400 4.8692
0.3818 56500 4.9782
0.3824 56600 5.0982
0.3831 56700 4.9478
0.3838 56800 5.0515
0.3845 56900 4.9851
0.3851 57000 4.9369
0.3858 57100 5.0503
0.3865 57200 5.1519
0.3872 57300 4.8901
0.3878 57400 4.9972
0.3885 57500 5.0872
0.3892 57600 5.0471
0.3899 57700 5.0104
0.3906 57800 4.9545
0.3912 57900 5.1393
0.3919 58000 5.1265
0.3926 58100 5.0318
0.3933 58200 4.9786
0.3939 58300 4.9941
0.3946 58400 4.9208
0.3953 58500 4.917
0.3960 58600 5.1085
0.3966 58700 5.0643
0.3973 58800 4.9786
0.3980 58900 5.083
0.3987 59000 4.9903
0.3993 59100 4.9337
0.4000 59200 4.999
0.4007 59300 5.0316
0.4014 59400 4.9835
0.4020 59500 4.9135
0.4027 59600 4.871
0.4034 59700 4.9476
0.4041 59800 4.9628
0.4047 59900 4.9808
0.4054 60000 5.0067
0.4061 60100 4.9598
0.4068 60200 5.1294
0.4074 60300 4.98
0.4081 60400 4.8716
0.4088 60500 4.9405
0.4095 60600 4.9857
0.4101 60700 4.8523
0.4108 60800 5.0364
0.4115 60900 4.9431
0.4122 61000 4.9074
0.4128 61100 5.0504
0.4135 61200 4.9199
0.4142 61300 5.0064
0.4149 61400 5.0509
0.4156 61500 4.871
0.4162 61600 5.0347
0.4169 61700 5.0781
0.4176 61800 5.0707
0.4183 61900 5.1243
0.4189 62000 4.9073
0.4196 62100 4.9545
0.4203 62200 4.9865
0.4210 62300 5.1234
0.4216 62400 4.8452
0.4223 62500 4.875
0.4230 62600 4.8942
0.4237 62700 4.8696
0.4243 62800 5.0397
0.4250 62900 4.9888
0.4257 63000 5.0882
0.4264 63100 4.975
0.4270 63200 4.9247
0.4277 63300 5.1847
0.4284 63400 4.8951
0.4291 63500 4.8482
0.4297 63600 4.9729
0.4304 63700 4.986
0.4311 63800 4.8952
0.4318 63900 4.8947
0.4324 64000 4.9858
0.4331 64100 4.9482
0.4338 64200 5.048
0.4345 64300 4.9908
0.4351 64400 4.9419
0.4358 64500 4.9761
0.4365 64600 4.9269
0.4372 64700 5.1057
0.4378 64800 5.0384
0.4385 64900 5.1029
0.4392 65000 5.0692
0.4399 65100 4.9154
0.4406 65200 5.0107
0.4412 65300 4.9505
0.4419 65400 4.9515
0.4426 65500 5.0706
0.4433 65600 5.077
0.4439 65700 5.0827
0.4446 65800 4.8848
0.4453 65900 4.908
0.4460 66000 4.9257
0.4466 66100 5.0686
0.4473 66200 5.0702
0.4480 66300 4.8844
0.4487 66400 4.9588
0.4493 66500 4.9962
0.4500 66600 4.9503
0.4507 66700 4.9838
0.4514 66800 4.9846
0.4520 66900 4.9147
0.4527 67000 4.7638
0.4534 67100 4.942
0.4541 67200 5.0893
0.4547 67300 4.965
0.4554 67400 5.0695
0.4561 67500 4.9575
0.4568 67600 5.0108
0.4574 67700 4.852
0.4581 67800 5.085
0.4588 67900 4.9382
0.4595 68000 4.8926
0.4601 68100 4.912
0.4608 68200 4.9563
0.4615 68300 4.8529
0.4622 68400 4.9267
0.4629 68500 4.9673
0.4635 68600 5.1755
0.4642 68700 5.0644
0.4649 68800 4.8318
0.4656 68900 5.0092
0.4662 69000 4.924
0.4669 69100 4.8676
0.4676 69200 5.0287
0.4683 69300 5.0049
0.4689 69400 4.9011
0.4696 69500 4.8192
0.4703 69600 4.9382
0.4710 69700 4.994
0.4716 69800 4.9774
0.4723 69900 4.9247
0.4730 70000 4.9374
0.4737 70100 4.9925
0.4743 70200 4.8646
0.4750 70300 4.9052
0.4757 70400 4.9067
0.4764 70500 4.9157
0.4770 70600 4.8941
0.4777 70700 5.046
0.4784 70800 4.8237
0.4791 70900 4.9428
0.4797 71000 5.0245
0.4804 71100 4.8914
0.4811 71200 4.9472
0.4818 71300 4.8793
0.4824 71400 4.999
0.4831 71500 4.973
0.4838 71600 4.888
0.4845 71700 5.0097
0.4851 71800 4.8948
0.4858 71900 4.9839
0.4865 72000 4.8481
0.4872 72100 4.8945
0.4879 72200 4.8968
0.4885 72300 4.909
0.4892 72400 4.9397
0.4899 72500 5.0138
0.4906 72600 5.0114
0.4912 72700 5.0896
0.4919 72800 4.9579
0.4926 72900 4.9736
0.4933 73000 4.881
0.4939 73100 5.0581
0.4946 73200 4.9883
0.4953 73300 4.8367
0.4960 73400 4.8918
0.4966 73500 4.7634
0.4973 73600 4.7917
0.4980 73700 5.0236
0.4987 73800 4.9218
0.4993 73900 4.9303
0.5000 74000 5.0704
0.5007 74100 4.987
0.5014 74200 4.8501
0.5020 74300 5.1014
0.5027 74400 4.8077
0.5034 74500 4.9579
0.5041 74600 4.9702
0.5047 74700 4.9198
0.5054 74800 4.9314
0.5061 74900 4.9475
0.5068 75000 4.9102
0.5074 75100 4.7671
0.5081 75200 4.9829
0.5088 75300 5.0088
0.5095 75400 4.853
0.5101 75500 5.0341
0.5108 75600 5.0197
0.5115 75700 4.849
0.5122 75800 4.8594
0.5129 75900 4.8618
0.5135 76000 4.8994
0.5142 76100 4.9774
0.5149 76200 5.0088
0.5156 76300 4.9808
0.5162 76400 4.9772
0.5169 76500 4.8915
0.5176 76600 4.8645
0.5183 76700 4.9583
0.5189 76800 4.8206
0.5196 76900 4.9344
0.5203 77000 4.8776
0.5210 77100 4.7974
0.5216 77200 4.8444
0.5223 77300 4.9191
0.5230 77400 5.1005
0.5237 77500 4.8371
0.5243 77600 4.8569
0.5250 77700 5.0098
0.5257 77800 4.9485
0.5264 77900 4.7743
0.5270 78000 4.9332
0.5277 78100 4.9188
0.5284 78200 4.9739
0.5291 78300 4.8949
0.5297 78400 4.9572
0.5304 78500 4.8833
0.5311 78600 4.8941
0.5318 78700 4.936
0.5324 78800 4.823
0.5331 78900 4.8624
0.5338 79000 4.8406
0.5345 79100 4.8722
0.5351 79200 4.8638
0.5358 79300 4.9524
0.5365 79400 4.9465
0.5372 79500 4.9761
0.5379 79600 4.9018
0.5385 79700 4.9327
0.5392 79800 4.8728
0.5399 79900 4.996
0.5406 80000 4.8807
0.5412 80100 4.9201
0.5419 80200 4.9557
0.5426 80300 4.9151
0.5433 80400 4.8949
0.5439 80500 4.9319
0.5446 80600 4.9462
0.5453 80700 4.9164
0.5460 80800 4.8398
0.5466 80900 4.9478
0.5473 81000 4.9709
0.5480 81100 4.9388
0.5487 81200 4.8187
0.5493 81300 5.1237
0.5500 81400 4.8263
0.5507 81500 4.9093
0.5514 81600 4.8278
0.5520 81700 5.0401
0.5527 81800 4.9249
0.5534 81900 4.7474
0.5541 82000 4.9207
0.5547 82100 5.0068
0.5554 82200 4.9627
0.5561 82300 4.941
0.5568 82400 4.8856
0.5574 82500 4.9453
0.5581 82600 4.8194
0.5588 82700 4.8966
0.5595 82800 5.0352
0.5602 82900 4.8495
0.5608 83000 4.8737
0.5615 83100 4.8582
0.5622 83200 4.9868
0.5629 83300 4.8476
0.5635 83400 4.8922
0.5642 83500 4.9305
0.5649 83600 5.0012
0.5656 83700 5.0854
0.5662 83800 4.8592
0.5669 83900 4.9316
0.5676 84000 4.9188
0.5683 84100 4.9274
0.5689 84200 4.8872
0.5696 84300 4.8193
0.5703 84400 4.8974
0.5710 84500 5.0469
0.5716 84600 5.0959
0.5723 84700 4.8588
0.5730 84800 4.7633
0.5737 84900 4.8139
0.5743 85000 4.9088
0.5750 85100 4.8373
0.5757 85200 4.8532
0.5764 85300 4.8006
0.5770 85400 4.9347
0.5777 85500 4.902
0.5784 85600 4.9073
0.5791 85700 4.8981
0.5797 85800 4.8218
0.5804 85900 5.0457
0.5811 86000 4.8216
0.5818 86100 4.8499
0.5824 86200 4.8396
0.5831 86300 4.8438
0.5838 86400 4.9687
0.5845 86500 5.0368
0.5852 86600 4.9792
0.5858 86700 4.9185
0.5865 86800 4.7731
0.5872 86900 4.8259
0.5879 87000 4.8377
0.5885 87100 4.9259
0.5892 87200 4.9458
0.5899 87300 4.8506
0.5906 87400 4.7984
0.5912 87500 4.9468
0.5919 87600 4.6931
0.5926 87700 5.0067
0.5933 87800 4.9026
0.5939 87900 4.9694
0.5946 88000 5.0212
0.5953 88100 4.9471
0.5960 88200 4.8433
0.5966 88300 4.8446
0.5973 88400 4.8384
0.5980 88500 4.8124
0.5987 88600 4.8674
0.5993 88700 4.7978
0.6000 88800 4.9072
0.6007 88900 4.8237
0.6014 89000 4.9705
0.6020 89100 4.8348
0.6027 89200 4.8037
0.6034 89300 4.9945
0.6041 89400 5.069
0.6047 89500 4.9034
0.6054 89600 4.848
0.6061 89700 4.9426
0.6068 89800 4.9519
0.6074 89900 4.9385
0.6081 90000 4.7274
0.6088 90100 5.006
0.6095 90200 4.8457
0.6102 90300 4.9149
0.6108 90400 4.8718
0.6115 90500 4.9802
0.6122 90600 5.0188
0.6129 90700 5.0026
0.6135 90800 4.8555
0.6142 90900 4.8301
0.6149 91000 4.9388
0.6156 91100 4.8552
0.6162 91200 4.832
0.6169 91300 4.9733
0.6176 91400 4.9955
0.6183 91500 4.8431
0.6189 91600 5.0583
0.6196 91700 4.8535
0.6203 91800 4.802
0.6210 91900 4.8304
0.6216 92000 4.8495
0.6223 92100 4.8347
0.6230 92200 4.9204
0.6237 92300 4.9706
0.6243 92400 4.8802
0.6250 92500 4.8389
0.6257 92600 4.9052
0.6264 92700 4.7354
0.6270 92800 4.8125
0.6277 92900 4.9224
0.6284 93000 4.8623
0.6291 93100 4.8557
0.6297 93200 5.0586
0.6304 93300 4.7108
0.6311 93400 4.8773
0.6318 93500 4.9871
0.6324 93600 4.7584
0.6331 93700 4.7968
0.6338 93800 4.8444
0.6345 93900 4.8546
0.6352 94000 4.919
0.6358 94100 4.9734
0.6365 94200 4.9805
0.6372 94300 4.7908
0.6379 94400 4.8707
0.6385 94500 4.8426
0.6392 94600 4.8301
0.6399 94700 4.8238
0.6406 94800 4.8391
0.6412 94900 4.8319
0.6419 95000 4.9225
0.6426 95100 4.8148
0.6433 95200 4.7127
0.6439 95300 4.8146
0.6446 95400 4.8545
0.6453 95500 4.9341
0.6460 95600 4.811
0.6466 95700 4.7797
0.6473 95800 4.8518
0.6480 95900 4.9098
0.6487 96000 4.8293
0.6493 96100 4.9575
0.6500 96200 4.9823
0.6507 96300 4.8951
0.6514 96400 4.9203
0.6520 96500 4.949
0.6527 96600 4.7515
0.6534 96700 4.841
0.6541 96800 5.0006
0.6547 96900 4.9503
0.6554 97000 4.858
0.6561 97100 4.8247
0.6568 97200 4.8647
0.6575 97300 4.8945
0.6581 97400 4.915
0.6588 97500 4.8665
0.6595 97600 4.988
0.6602 97700 4.9165
0.6608 97800 4.9017
0.6615 97900 4.8478
0.6622 98000 4.9352
0.6629 98100 4.9424
0.6635 98200 4.8742
0.6642 98300 4.8291
0.6649 98400 4.7546
0.6656 98500 4.9225
0.6662 98600 4.9349
0.6669 98700 5.039
0.6676 98800 4.807
0.6683 98900 4.8662
0.6689 99000 4.8141
0.6696 99100 4.8987
0.6703 99200 5.0198
0.6710 99300 4.812
0.6716 99400 4.8604
0.6723 99500 4.7991
0.6730 99600 4.8771
0.6737 99700 4.8452
0.6743 99800 4.8962
0.6750 99900 4.9228
0.6757 100000 4.8508
0.6764 100100 4.9226
0.6770 100200 4.8876
0.6777 100300 4.8183
0.6784 100400 4.9764
0.6791 100500 4.8009
0.6797 100600 4.8364
0.6804 100700 4.9191
0.6811 100800 4.9095
0.6818 100900 4.8875
0.6825 101000 4.8351
0.6831 101100 4.8123
0.6838 101200 4.8977
0.6845 101300 4.8961
0.6852 101400 4.8829
0.6858 101500 5.0646
0.6865 101600 4.882
0.6872 101700 4.7914
0.6879 101800 4.8949
0.6885 101900 5.0041
0.6892 102000 4.8903
0.6899 102100 4.787
0.6906 102200 4.9285
0.6912 102300 4.8532
0.6919 102400 4.714
0.6926 102500 4.7915
0.6933 102600 4.8374
0.6939 102700 4.9381
0.6946 102800 4.6831
0.6953 102900 4.9734
0.6960 103000 4.8589
0.6966 103100 4.7956
0.6973 103200 4.9256
0.6980 103300 4.8837
0.6987 103400 4.811
0.6993 103500 4.7817
0.7000 103600 4.8917
0.7007 103700 4.9237
0.7014 103800 5.1242
0.7020 103900 4.9205
0.7027 104000 4.7802
0.7034 104100 4.747
0.7041 104200 4.8402
0.7047 104300 4.8237
0.7054 104400 4.891
0.7061 104500 4.9716
0.7068 104600 4.782
0.7075 104700 4.8045
0.7081 104800 4.8766
0.7088 104900 4.6696
0.7095 105000 4.966
0.7102 105100 4.7423
0.7108 105200 4.8792
0.7115 105300 4.9519
0.7122 105400 4.8432
0.7129 105500 4.747
0.7135 105600 4.9843
0.7142 105700 4.8073
0.7149 105800 4.8489
0.7156 105900 4.8077
0.7162 106000 4.8104
0.7169 106100 4.8456
0.7176 106200 4.7071
0.7183 106300 4.8306
0.7189 106400 4.898
0.7196 106500 4.984
0.7203 106600 4.7332
0.7210 106700 4.8607
0.7216 106800 4.7275
0.7223 106900 4.9019
0.7230 107000 5.0538
0.7237 107100 4.9044
0.7243 107200 4.8562
0.7250 107300 4.7629
0.7257 107400 4.9326
0.7264 107500 4.9372
0.7270 107600 4.9545
0.7277 107700 4.8538
0.7284 107800 4.8037
0.7291 107900 4.8438
0.7297 108000 4.8519
0.7304 108100 4.8531
0.7311 108200 4.9255
0.7318 108300 4.9294
0.7325 108400 5.0015
0.7331 108500 4.8106
0.7338 108600 4.7808
0.7345 108700 4.8153
0.7352 108800 4.8395
0.7358 108900 4.9764
0.7365 109000 4.9352
0.7372 109100 4.8532
0.7379 109200 4.8949
0.7385 109300 4.7463
0.7392 109400 4.9339
0.7399 109500 4.8068
0.7406 109600 4.7261
0.7412 109700 4.8311
0.7419 109800 4.8155
0.7426 109900 4.8212
0.7433 110000 4.8287
0.7439 110100 4.9467
0.7446 110200 4.919
0.7453 110300 4.9262
0.7460 110400 4.7839
0.7466 110500 4.5588
0.7473 110600 4.8132
0.7480 110700 4.7664
0.7487 110800 4.8463
0.7493 110900 4.7304
0.7500 111000 4.7074
0.7507 111100 4.8316
0.7514 111200 4.801
0.7520 111300 4.9375
0.7527 111400 4.8528
0.7534 111500 4.8829
0.7541 111600 4.8974
0.7548 111700 4.799
0.7554 111800 4.855
0.7561 111900 4.7261
0.7568 112000 4.7997
0.7575 112100 4.7468
0.7581 112200 4.8724
0.7588 112300 5.0014
0.7595 112400 4.8915
0.7602 112500 4.9614
0.7608 112600 4.8972
0.7615 112700 4.9147
0.7622 112800 4.7014
0.7629 112900 4.8888
0.7635 113000 4.7892
0.7642 113100 4.842
0.7649 113200 4.9121
0.7656 113300 4.8818
0.7662 113400 4.7736
0.7669 113500 4.8422
0.7676 113600 4.8474
0.7683 113700 4.8108
0.7689 113800 4.8007
0.7696 113900 4.7973
0.7703 114000 4.835
0.7710 114100 4.8499
0.7716 114200 4.8245
0.7723 114300 4.8621
0.7730 114400 4.9664
0.7737 114500 4.7552
0.7743 114600 4.889
0.7750 114700 4.8633
0.7757 114800 4.945
0.7764 114900 4.8014
0.7770 115000 5.0571
0.7777 115100 4.8442
0.7784 115200 4.891
0.7791 115300 4.8179
0.7798 115400 4.8536
0.7804 115500 4.8337
0.7811 115600 4.889
0.7818 115700 4.8317
0.7825 115800 4.954
0.7831 115900 4.6911
0.7838 116000 4.6755
0.7845 116100 4.7733
0.7852 116200 4.7477
0.7858 116300 4.7943
0.7865 116400 4.9386
0.7872 116500 4.9404
0.7879 116600 4.8741
0.7885 116700 4.828
0.7892 116800 4.6601
0.7899 116900 4.8839
0.7906 117000 4.7382
0.7912 117100 4.9639
0.7919 117200 4.8114
0.7926 117300 4.8981
0.7933 117400 4.6133
0.7939 117500 4.9746
0.7946 117600 4.806
0.7953 117700 4.8657
0.7960 117800 4.7481
0.7966 117900 4.9489
0.7973 118000 4.8918
0.7980 118100 4.8091
0.7987 118200 4.8468
0.7993 118300 4.8915
0.8000 118400 4.8232
0.8007 118500 4.8094
0.8014 118600 4.8406
0.8020 118700 4.6952
0.8027 118800 4.9493
0.8034 118900 4.8409
0.8041 119000 4.8076
0.8048 119100 4.7683
0.8054 119200 4.7711
0.8061 119300 4.8403
0.8068 119400 4.8552
0.8075 119500 4.7858
0.8081 119600 4.7949
0.8088 119700 4.857
0.8095 119800 4.8493
0.8102 119900 4.8138
0.8108 120000 4.8924
0.8115 120100 4.9199
0.8122 120200 4.7959
0.8129 120300 4.9105
0.8135 120400 4.7398
0.8142 120500 4.7417
0.8149 120600 4.8675
0.8156 120700 4.8286
0.8162 120800 4.9776
0.8169 120900 4.7633
0.8176 121000 4.8754
0.8183 121100 4.6804
0.8189 121200 4.9887
0.8196 121300 4.7755
0.8203 121400 4.8534
0.8210 121500 4.796
0.8216 121600 4.7772
0.8223 121700 4.7257
0.8230 121800 4.7923
0.8237 121900 4.9664
0.8243 122000 4.9028
0.8250 122100 4.735
0.8257 122200 4.8558
0.8264 122300 4.6377
0.8270 122400 4.7363
0.8277 122500 4.8146
0.8284 122600 4.8014
0.8291 122700 4.9073
0.8298 122800 4.885
0.8304 122900 4.8979
0.8311 123000 4.6831
0.8318 123100 4.8764
0.8325 123200 4.7262
0.8331 123300 4.8478
0.8338 123400 4.7653
0.8345 123500 4.747
0.8352 123600 4.862
0.8358 123700 4.9815
0.8365 123800 4.8782
0.8372 123900 4.9795
0.8379 124000 4.9657
0.8385 124100 4.7268
0.8392 124200 4.8524
0.8399 124300 4.7545
0.8406 124400 4.7671
0.8412 124500 4.9008
0.8419 124600 4.8795
0.8426 124700 4.7094
0.8433 124800 4.8436
0.8439 124900 4.8447
0.8446 125000 4.9346
0.8453 125100 4.8161
0.8460 125200 4.9257
0.8466 125300 4.7665
0.8473 125400 4.7542
0.8480 125500 4.7743
0.8487 125600 4.8028
0.8493 125700 4.7752
0.8500 125800 4.8159
0.8507 125900 4.684
0.8514 126000 4.7639
0.8521 126100 4.8525
0.8527 126200 4.6599
0.8534 126300 4.8479
0.8541 126400 4.7353
0.8548 126500 4.8794
0.8554 126600 4.8526
0.8561 126700 4.9318
0.8568 126800 4.7838
0.8575 126900 4.7219
0.8581 127000 4.6088
0.8588 127100 4.9252
0.8595 127200 4.8616
0.8602 127300 4.8704
0.8608 127400 4.9092
0.8615 127500 4.8068
0.8622 127600 4.7678
0.8629 127700 4.9085
0.8635 127800 4.9128
0.8642 127900 4.788
0.8649 128000 4.8339
0.8656 128100 4.8148
0.8662 128200 4.85
0.8669 128300 4.7569
0.8676 128400 4.6677
0.8683 128500 4.7757
0.8689 128600 4.8681
0.8696 128700 4.7805
0.8703 128800 4.7842
0.8710 128900 4.7266
0.8716 129000 4.8235
0.8723 129100 4.675
0.8730 129200 4.8449
0.8737 129300 4.8369
0.8743 129400 4.6927
0.8750 129500 4.8986
0.8757 129600 4.8778
0.8764 129700 4.8664
0.8771 129800 4.8076
0.8777 129900 4.9578
0.8784 130000 4.9221
0.8791 130100 4.7611
0.8798 130200 4.7326
0.8804 130300 4.873
0.8811 130400 4.7681
0.8818 130500 4.748
0.8825 130600 4.9144
0.8831 130700 4.9244
0.8838 130800 4.6843
0.8845 130900 4.7198
0.8852 131000 4.7994
0.8858 131100 4.6881
0.8865 131200 4.8807
0.8872 131300 4.7782
0.8879 131400 4.6872
0.8885 131500 4.8619
0.8892 131600 4.9362
0.8899 131700 4.8273
0.8906 131800 4.6813
0.8912 131900 4.7488
0.8919 132000 5.0823
0.8926 132100 4.759
0.8933 132200 4.8894
0.8939 132300 4.8348
0.8946 132400 4.7979
0.8953 132500 4.9633
0.8960 132600 4.6837
0.8966 132700 4.827
0.8973 132800 4.7684
0.8980 132900 4.7666
0.8987 133000 4.6846
0.8993 133100 4.7952
0.9000 133200 4.932
0.9007 133300 4.904
0.9014 133400 4.8865
0.9021 133500 4.882
0.9027 133600 4.8556
0.9034 133700 4.9084
0.9041 133800 4.7161
0.9048 133900 4.8533
0.9054 134000 4.7563
0.9061 134100 4.8941
0.9068 134200 4.7466
0.9075 134300 4.8495
0.9081 134400 4.6427
0.9088 134500 4.7976
0.9095 134600 4.7338
0.9102 134700 4.7859
0.9108 134800 4.7682
0.9115 134900 4.7073
0.9122 135000 4.7621
0.9129 135100 4.7238
0.9135 135200 4.8175
0.9142 135300 4.7787
0.9149 135400 4.8235
0.9156 135500 4.7365
0.9162 135600 4.9519
0.9169 135700 4.9351
0.9176 135800 4.7475
0.9183 135900 4.7262
0.9189 136000 4.7777
0.9196 136100 5.0142
0.9203 136200 4.7907
0.9210 136300 4.8532
0.9216 136400 4.8485
0.9223 136500 4.7198
0.9230 136600 4.7489
0.9237 136700 4.7924
0.9243 136800 4.9665
0.9250 136900 4.8142
0.9257 137000 4.7417
0.9264 137100 4.7902
0.9271 137200 4.6992
0.9277 137300 4.8546
0.9284 137400 4.912
0.9291 137500 4.8318
0.9298 137600 4.8206
0.9304 137700 4.8262
0.9311 137800 4.8196
0.9318 137900 4.8031
0.9325 138000 4.7586
0.9331 138100 4.9838
0.9338 138200 4.8376
0.9345 138300 4.8503
0.9352 138400 4.791
0.9358 138500 4.8049
0.9365 138600 4.763
0.9372 138700 4.7151
0.9379 138800 4.7011
0.9385 138900 4.8396
0.9392 139000 4.8832
0.9399 139100 4.8726
0.9406 139200 4.7795
0.9412 139300 4.9655
0.9419 139400 4.7534
0.9426 139500 4.6648
0.9433 139600 4.7469
0.9439 139700 5.0025
0.9446 139800 4.6819
0.9453 139900 4.7776
0.9460 140000 4.7588
0.9466 140100 4.8632
0.9473 140200 4.7968
0.9480 140300 4.71
0.9487 140400 4.9049
0.9493 140500 4.854
0.9500 140600 4.7854
0.9507 140700 4.6892
0.9514 140800 4.8114
0.9521 140900 4.7882
0.9527 141000 4.7983
0.9534 141100 4.7194
0.9541 141200 4.6948
0.9548 141300 4.7143
0.9554 141400 4.8061
0.9561 141500 4.8325
0.9568 141600 5.0124
0.9575 141700 4.8147
0.9581 141800 4.7599
0.9588 141900 4.7414
0.9595 142000 4.7544
0.9602 142100 4.7658
0.9608 142200 4.9544
0.9615 142300 4.7399
0.9622 142400 4.9067
0.9629 142500 4.7801
0.9635 142600 4.9353
0.9642 142700 4.7814
0.9649 142800 4.7622
0.9656 142900 4.6572
0.9662 143000 4.8606
0.9669 143100 4.6498
0.9676 143200 4.8319
0.9683 143300 4.6856
0.9689 143400 4.8436
0.9696 143500 4.8899
0.9703 143600 4.9186
0.9710 143700 4.8192
0.9716 143800 4.829
0.9723 143900 4.7806
0.9730 144000 4.8361
0.9737 144100 4.8053
0.9744 144200 4.7178
0.9750 144300 4.706
0.9757 144400 4.696
0.9764 144500 4.768
0.9771 144600 4.9138
0.9777 144700 4.8175
0.9784 144800 4.7693
0.9791 144900 4.8059
0.9798 145000 4.8145
0.9804 145100 4.7919
0.9811 145200 4.8201
0.9818 145300 4.7305
0.9825 145400 4.8962
0.9831 145500 4.78
0.9838 145600 4.8389
0.9845 145700 4.7632
0.9852 145800 4.7947
0.9858 145900 4.7513
0.9865 146000 4.8301
0.9872 146100 4.7331
0.9879 146200 4.8216
0.9885 146300 4.7698
0.9892 146400 4.7947
0.9899 146500 4.6226
0.9906 146600 4.8399
0.9912 146700 4.727
0.9919 146800 4.8684
0.9926 146900 4.7456
0.9933 147000 4.9196
0.9939 147100 4.7849
0.9946 147200 4.7178
0.9953 147300 4.7022
0.9960 147400 4.7802
0.9966 147500 4.9208
0.9973 147600 4.732
0.9980 147700 4.9044
0.9987 147800 4.8702
0.9994 147900 4.8843

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 5.1.0
  • Transformers: 4.55.4
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.10.1
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
Downloads last month
-
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for KhaledReda/all-MiniLM-L6-v4-pair_score

Finetuned
(743)
this model

Dataset used to train KhaledReda/all-MiniLM-L6-v4-pair_score

Paper for KhaledReda/all-MiniLM-L6-v4-pair_score