SentenceTransformer based on colorfulscoop/sbert-base-ja
This is a sentence-transformers model finetuned from colorfulscoop/sbert-base-ja. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: colorfulscoop/sbert-base-ja
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LeoChiuu/sbert-base-ja-arc-temp")
# Run inference
sentences = [
'リリアンってものの形を変えられる?',
'リリアンってものの姿を変える魔法を使える?',
'井戸を調べよう',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
custom-arc-semantics-data - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9551 |
| cosine_accuracy_threshold | 0.5569 |
| cosine_f1 | 0.9655 |
| cosine_f1_threshold | 0.5569 |
| cosine_precision | 0.9825 |
| cosine_recall | 0.9492 |
| cosine_ap | 0.9932 |
| dot_accuracy | 0.9438 |
| dot_accuracy_threshold | 281.2468 |
| dot_f1 | 0.958 |
| dot_f1_threshold | 240.4574 |
| dot_precision | 0.95 |
| dot_recall | 0.9661 |
| dot_ap | 0.9921 |
| manhattan_accuracy | 0.9551 |
| manhattan_accuracy_threshold | 468.2258 |
| manhattan_f1 | 0.9655 |
| manhattan_f1_threshold | 486.8052 |
| manhattan_precision | 0.9825 |
| manhattan_recall | 0.9492 |
| manhattan_ap | 0.9937 |
| euclidean_accuracy | 0.9551 |
| euclidean_accuracy_threshold | 21.1172 |
| euclidean_f1 | 0.9655 |
| euclidean_f1_threshold | 21.9531 |
| euclidean_precision | 0.9825 |
| euclidean_recall | 0.9492 |
| euclidean_ap | 0.9934 |
| max_accuracy | 0.9551 |
| max_accuracy_threshold | 468.2258 |
| max_f1 | 0.9655 |
| max_f1_threshold | 486.8052 |
| max_precision | 0.9825 |
| max_recall | 0.9661 |
| max_ap | 0.9937 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 356 training samples
- Columns:
text1,text2, andlabel - Approximate statistics based on the first 1000 samples:
text1 text2 label type string string int details - min: 4 tokens
- mean: 8.31 tokens
- max: 15 tokens
- min: 4 tokens
- mean: 8.32 tokens
- max: 14 tokens
- 0: ~36.24%
- 1: ~63.76%
- Samples:
text1 text2 label ジャックはどんな魔法を使うの?見た目を変える魔法0魔法使い魔法をかけられる人1ぬいぐるみが花花がぬいぐるみに変えられている1 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 89 evaluation samples
- Columns:
text1,text2, andlabel - Approximate statistics based on the first 1000 samples:
text1 text2 label type string string int details - min: 4 tokens
- mean: 8.22 tokens
- max: 15 tokens
- min: 4 tokens
- mean: 8.13 tokens
- max: 14 tokens
- 0: ~33.71%
- 1: ~66.29%
- Samples:
text1 text2 label トーチなにも要らない0家の外家の外へ行こう1お皿に赤い染みがついていたから棚からトマトがなくなってたから0 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochlearning_rate: 2e-05num_train_epochs: 13warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 13max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | custom-arc-semantics-data_max_ap |
|---|---|---|---|---|
| None | 0 | - | - | 0.9511 |
| 1.0 | 45 | 1.9903 | 1.1863 | 0.9765 |
| 2.0 | 90 | 0.8198 | 1.0991 | 0.9873 |
| 3.0 | 135 | 0.0806 | 0.9033 | 0.9914 |
| 4.0 | 180 | 0.0024 | 0.7569 | 0.9930 |
| 5.0 | 225 | 0.0002 | 0.7598 | 0.9937 |
| 6.0 | 270 | 0.0001 | 0.7418 | 0.9937 |
| 7.0 | 315 | 0.0001 | 0.7322 | 0.9937 |
| 8.0 | 360 | 0.0001 | 0.7269 | 0.9937 |
| 9.0 | 405 | 0.0001 | 0.7277 | 0.9937 |
| 10.0 | 450 | 0.0001 | 0.7289 | 0.9937 |
| 11.0 | 495 | 0.0 | 0.7301 | 0.9937 |
| 12.0 | 540 | 0.0001 | 0.7299 | 0.9937 |
| 13.0 | 585 | 0.0001 | 0.7296 | 0.9937 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 9
Model tree for LeoChiuu/sbert-base-ja-arc-temp
Base model
colorfulscoop/sbert-base-jaEvaluation results
- Cosine Accuracy on custom arc semantics dataself-reported0.955
- Cosine Accuracy Threshold on custom arc semantics dataself-reported0.557
- Cosine F1 on custom arc semantics dataself-reported0.966
- Cosine F1 Threshold on custom arc semantics dataself-reported0.557
- Cosine Precision on custom arc semantics dataself-reported0.982
- Cosine Recall on custom arc semantics dataself-reported0.949
- Cosine Ap on custom arc semantics dataself-reported0.993
- Dot Accuracy on custom arc semantics dataself-reported0.944
- Dot Accuracy Threshold on custom arc semantics dataself-reported281.247
- Dot F1 on custom arc semantics dataself-reported0.958