๐Ÿ“ฐ Fake News Detector (Professional Pipeline)

ู‡ุฐุง ู†ู…ูˆุฐุฌ Scikit-learn Pipeline ุชู… ุชุฏุฑูŠุจู‡ ู„ุชุตู†ูŠู ุงู„ู…ู‚ุงู„ุงุช ุงู„ุฅุฎุจุงุฑูŠุฉ ุฅู„ู‰ "ุญู‚ูŠู‚ูŠุฉ (True)" ุฃูˆ "ูƒุงุฐุจุฉ (Fake)".

๐Ÿš€ ูƒูŠู ูŠุนู…ู„ุŸ

ูŠุณุชุฎุฏู… ุงู„ู†ู…ูˆุฐุฌ Pipeline ุงุญุชุฑุงููŠ ูŠุฏู…ุฌ ุฎุทูˆุชูŠู† ููŠ ุฎุทูˆุฉ ูˆุงุญุฏุฉ:

  1. TF-IDF Vectorizer: ู„ุชุญูˆูŠู„ ุงู„ู†ุต ุฅู„ู‰ ู…ุตููˆูุฉ ุฑู‚ู…ูŠุฉ.
  2. Logistic Regression: ู„ุนู…ู„ูŠุฉ ุงู„ุชุตู†ูŠู.

๐Ÿ“ˆ ุฃุฏุงุก ุงู„ู†ู…ูˆุฐุฌ

ุญู‚ู‚ ุงู„ู†ู…ูˆุฐุฌ ุฏู‚ุฉ 96.50% ุนู„ู‰ ู…ุฌู…ูˆุนุฉ ุงู„ุงุฎุชุจุงุฑ. ![Model Accuracy](Model Accuracy.png)

๐Ÿ› ๏ธ ูƒูŠููŠุฉ ุงู„ุงุณุชุฎุฏุงู… (ููŠ Python)

ุจูุถู„ ุงู„ู€ PipelineุŒ ุฃุตุจุญ ุงู„ุงุณุชุฎุฏุงู… ุจุณูŠุทุงู‹ ุฌุฏุงู‹:

import skops.io as sio

# ุชุญู…ูŠู„ ู…ู„ู ุงู„ู€ Pipeline ุงู„ูˆุงุญุฏ
pipeline = sio.load("fake_news_pipeline.skops", trusted=True)

# ู†ุต ู„ู„ุชุฌุฑุจุฉ
text_to_test = "Your sample news text goes here..."

# ุงู„ุชู†ุจุค ู…ุจุงุดุฑุฉ (ุงู„ู€ Pipeline ูŠุชูˆู„ู‰ ุงู„ุชุญูˆูŠู„ ูˆุงู„ุชู†ุจุค)
prediction_label = pipeline.predict([text_to_test])[0]
probabilities = pipeline.predict_proba([text_to_test])[0]

label = "True" if prediction_label == 1 else "Fake"
confidence = probabilities[prediction_label]

print(f"Prediction: {label}")
print(f"Confidence: {confidence:.2f}")
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Space using Ma120/Fake-News-Detection 1