Research_paper_MLM_Final_Label
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9925
- Accuracy: 0.8591
- F1: 0.8575
- Precision: 0.8712
- Recall: 0.8591
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| 0.1091 | 0.04 | 500 | 0.9687 | 0.8633 | 0.8614 | 0.8791 | 0.8633 |
| 0.1186 | 0.08 | 1000 | 1.2620 | 0.8629 | 0.8612 | 0.8769 | 0.8629 |
| 0.2068 | 0.12 | 1500 | 2.0443 | 0.8527 | 0.8509 | 0.8659 | 0.8527 |
| 0.42 | 0.16 | 2000 | 2.1931 | 0.8595 | 0.8574 | 0.8764 | 0.8595 |
| 0.1435 | 0.2 | 2500 | 2.0973 | 0.8644 | 0.8625 | 0.8805 | 0.8644 |
| 0.4373 | 0.24 | 3000 | 2.0976 | 0.8603 | 0.8580 | 0.8785 | 0.8603 |
| 0.1527 | 0.28 | 3500 | 2.2136 | 0.8550 | 0.8532 | 0.8679 | 0.8550 |
| 0.459 | 0.32 | 4000 | 2.0543 | 0.8610 | 0.8590 | 0.8775 | 0.8610 |
| 0.2396 | 0.36 | 4500 | 2.1373 | 0.8565 | 0.8548 | 0.8690 | 0.8565 |
| 0.1641 | 0.4 | 5000 | 2.2913 | 0.8557 | 0.8539 | 0.8695 | 0.8557 |
| 0.1841 | 0.44 | 5500 | 2.1315 | 0.8539 | 0.8520 | 0.8672 | 0.8539 |
| 0.133 | 0.48 | 6000 | 2.2268 | 0.8580 | 0.8564 | 0.8695 | 0.8580 |
| 0.1659 | 0.52 | 6500 | 2.1685 | 0.8573 | 0.8557 | 0.8689 | 0.8573 |
| 0.1677 | 0.56 | 7000 | 2.1515 | 0.8576 | 0.8558 | 0.8712 | 0.8576 |
| 0.3713 | 0.6 | 7500 | 2.2057 | 0.8606 | 0.8584 | 0.8785 | 0.8606 |
| 0.1469 | 0.64 | 8000 | 1.8279 | 0.8606 | 0.8594 | 0.8698 | 0.8606 |
| 0.3673 | 0.68 | 8500 | 1.9808 | 0.8625 | 0.8603 | 0.8812 | 0.8625 |
| 0.1395 | 0.72 | 9000 | 2.0565 | 0.8603 | 0.8585 | 0.8741 | 0.8603 |
| 0.1052 | 0.76 | 9500 | 2.0813 | 0.8606 | 0.8591 | 0.8724 | 0.8606 |
| 0.3925 | 0.8 | 10000 | 2.0700 | 0.8569 | 0.8553 | 0.8687 | 0.8569 |
| 0.1886 | 0.84 | 10500 | 1.9925 | 0.8591 | 0.8575 | 0.8712 | 0.8591 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
- Downloads last month
- 2