SentenceTransformer based on TawasulAI/Faheem-mE5_Base_5_epochs
This is a sentence-transformers model finetuned from TawasulAI/Faheem-mE5_Base_5_epochs. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: TawasulAI/Faheem-mE5_Base_5_epochs
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("TawasulAI/Medical-mE5-LoRA")
# Run inference
sentences = [
'query: السمنة يعني الوزن الزايد وغير هيك اكل وجبات كبيرة ودسمة',
'passage: الوزن الزايد اللي هو السمنة غالباً بييجي من اكل وجبات كبيرة ودسمة.',
'passage: النحافة يعني الوزن الناقص وغير هيك قلة اكل وجبات كبيرة ودسمة',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
medical_validation_eval - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9983 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 21,840 training samples
- Columns:
anchor,positive, andnegative - Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 5 tokens
- mean: 65.21 tokens
- max: 512 tokens
- min: 4 tokens
- mean: 55.25 tokens
- max: 414 tokens
- min: 4 tokens
- mean: 40.55 tokens
- max: 433 tokens
- Samples:
anchor positive negative query: بيوقف الطول عند سن البلوغpassage: بيكتمل الطول عند سن البلوغpassage: بيوقف ظهور حب الشباب عند سن البلوغquery: مراجعة الجراح مهمة وألف سلامةpassage: لازم تشوف الجراح عشان تطمن على حالك. ألف سلامة.passage: مراجعة نتائج التحاليل مهمة وألف سلامةquery: ما في داعي تصوم و لازم تاخد الدوا بوقتهpassage: بتقدر ما تصوم، بس خليك ملتزم بـالدوا بوقته.passage: لازم تصوم و لازم تاخد الدوا بوقته. - Loss:
MatryoshkaLosswith these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32learning_rate: 0.0005weight_decay: 0.05num_train_epochs: 2lr_scheduler_type: cosinewarmup_ratio: 0.15fp16: Truedataloader_drop_last: Trueload_best_model_at_end: Truepush_to_hub: Truehub_model_id: TawasulAI/Medical-mE5-LoRAhub_strategy: end
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 0.0005weight_decay: 0.05adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.15warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: TawasulAI/Medical-mE5-LoRAhub_strategy: endhub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | medical_validation_eval_cosine_accuracy |
|---|---|---|---|
| None | 0 | - | 0.9983 |
| 0.1466 | 100 | 0.4957 | - |
| 0.2933 | 200 | 0.4185 | 0.9983 |
| 0.4399 | 300 | 0.507 | - |
| 0.5865 | 400 | 0.4922 | 0.9983 |
| 0.7331 | 500 | 0.4883 | - |
| 0.8798 | 600 | 0.4528 | 0.9983 |
| 1.0264 | 700 | 0.4169 | - |
| 1.1730 | 800 | 0.4371 | 0.9967 |
| 1.3196 | 900 | 0.4162 | - |
| 1.4663 | 1000 | 0.3776 | 0.9983 |
| 1.6129 | 1100 | 0.4078 | - |
| 1.7595 | 1200 | 0.3706 | 0.9983 |
| 1.9062 | 1300 | 0.3934 | - |
| 2.0 | 1364 | - | 0.9983 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.7.0+cu128
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Model tree for TawasulAI/Medical-mE5-LoRA
Base model
TawasulAI/Faheem-mE5_Base_5_epochsEvaluation results
- Cosine Accuracy on medical validation evalself-reported0.998