SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the mock-stsb dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'GM12873',
'leukocyte',
'pancreas',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.7059 |
| spearman_cosine | 0.6954 |
Training Details
Training Dataset
mock-stsb
- Dataset: mock-stsb at d5ba748
- Size: 1,128 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 5.46 tokens
- max: 10 tokens
- min: 3 tokens
- mean: 5.55 tokens
- max: 10 tokens
- min: 0.0
- mean: 0.44
- max: 0.9
- Samples:
sentence1 sentence2 score OVCAR3pancreas0.05L1-S8respiratory system0.001peripheral nervous system22Rv10.001 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
mock-stsb
- Dataset: mock-stsb at d5ba748
- Size: 284 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 284 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
- mean: 5.6 tokens
- max: 9 tokens
- min: 3 tokens
- mean: 5.71 tokens
- max: 9 tokens
- min: 0.0
- mean: 0.45
- max: 0.9
- Samples:
sentence1 sentence2 score SJCRH30cancer cell0.9CWRU1exocrine gland0.05epithelial cellCaki20.9 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 4per_device_eval_batch_size: 4learning_rate: 1e-05num_train_epochs: 50warmup_ratio: 0.1load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 1e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 50max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
|---|---|---|---|---|
| 1.0 | 282 | 0.2157 | 0.1413 | 0.4340 |
| 2.0 | 564 | 0.1402 | 0.1207 | 0.6198 |
| 3.0 | 846 | 0.1239 | 0.0973 | 0.6541 |
| 4.0 | 1128 | 0.1102 | 0.0858 | 0.6820 |
| 5.0 | 1410 | 0.1006 | 0.0867 | 0.6664 |
| 6.0 | 1692 | 0.0882 | 0.0886 | 0.6547 |
| 7.0 | 1974 | 0.076 | 0.0842 | 0.6660 |
| 8.0 | 2256 | 0.0639 | 0.0883 | 0.6392 |
| 9.0 | 2538 | 0.0538 | 0.0896 | 0.6300 |
| 10.0 | 2820 | 0.046 | 0.0884 | 0.6424 |
| 11.0 | 3102 | 0.0427 | 0.0858 | 0.6600 |
| 12.0 | 3384 | 0.0363 | 0.0878 | 0.6454 |
| 13.0 | 3666 | 0.0331 | 0.0838 | 0.6710 |
| 14.0 | 3948 | 0.0309 | 0.0839 | 0.6534 |
| 15.0 | 4230 | 0.0277 | 0.0841 | 0.6650 |
| 16.0 | 4512 | 0.026 | 0.0843 | 0.6933 |
| 17.0 | 4794 | 0.0238 | 0.0884 | 0.6557 |
| 18.0 | 5076 | 0.0229 | 0.0868 | 0.6649 |
| 19.0 | 5358 | 0.022 | 0.0867 | 0.6629 |
| 20.0 | 5640 | 0.021 | 0.0809 | 0.6815 |
| 21.0 | 5922 | 0.0196 | 0.0827 | 0.6844 |
| 22.0 | 6204 | 0.0189 | 0.0857 | 0.6770 |
| 23.0 | 6486 | 0.0186 | 0.0833 | 0.6868 |
| 24.0 | 6768 | 0.0172 | 0.0889 | 0.6710 |
| 25.0 | 7050 | 0.0171 | 0.0806 | 0.6954 |
Framework Versions
- Python: 3.11.5
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 18
Model tree for databio/sbert-encode-cellines-tuned
Base model
sentence-transformers/all-MiniLM-L6-v2Dataset used to train databio/sbert-encode-cellines-tuned
Evaluation results
- Pearson Cosine on sts devself-reported0.706
- Spearman Cosine on sts devself-reported0.695