|
|
--- |
|
|
datasets: |
|
|
- PanCollection |
|
|
language: en |
|
|
license: gpl-2.0 |
|
|
size_categories: |
|
|
- 1K<n<10K |
|
|
tags: |
|
|
- Pytorch |
|
|
--- |
|
|
|
|
|
# ✨ PanCollection |
|
|
|
|
|
🤗 To get started with PanCollection benchmark (training, inference, etc.), we recommend reading [Google Colab](https://colab.research.google.com/drive/1KpWWj1lVUGllZCws01zQfd6CeURuGL2O#scrollTo=k53dsFhAdp6n)! |
|
|
|
|
|
|
|
|
## Recommendations |
|
|
|
|
|
We recommend users to use the code-toolbox [DLPan-Toolbox](https://github.com/liangjiandeng/DLPan-Toolbox/tree/main/02-Test-toolbox-for-traditional-and-DL(Matlab)) + the dataset [PanCollection](https://drive.google.com/drive/folders/15VXUjqPybtqUN_spKfJbw40W05K4nDdY?usp=sharing) for fair training and testing! |
|
|
|
|
|
### Deploy |
|
|
|
|
|
PanCollection has provided complete packages. |
|
|
``` |
|
|
pip install pancollection --upgrade |
|
|
``` |
|
|
|
|
|
## How to Get Started with the Model |
|
|
|
|
|
|
|
|
```python |
|
|
import pancollection as pan |
|
|
cfg = pan.TaskDispatcher.new(task='pansharpening', mode='entrypoint', arch='FusionNet', |
|
|
dataset_name="gf2", use_resume=False, |
|
|
dataset={'train': 'gf2', 'test': 'test_gf2_multiExm1.h5'}) |
|
|
print(pan.TaskDispatcher._task) |
|
|
pan.trainer.main(cfg, pan.build_model, pan.getDataSession) |
|
|
``` |
|
|
|
|
|
## Training Details |
|
|
|
|
|
See [Google Colab](https://colab.research.google.com/drive/1KpWWj1lVUGllZCws01zQfd6CeURuGL2O) for quick start. |
|
|
|
|
|
See [Github Project](https://github.com/XiaoXiao-Woo/PanCollection) for coding details. |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
See the [Leaderboard](https://paperswithcode.com/dataset/worldview-3-pancollection) for model results. |
|
|
|
|
|
See the [PanCollection Paper](https://liangjiandeng.github.io/papers/2022/deng-jig2022.pdf) for early results. |
|
|
|
|
|
|
|
|
|
|
|
| **Satellite** | **Value** | **Comment** | |
|
|
|--------------------|-----------|----------------------------------------| |
|
|
| WorldView-3 | 2047 | | |
|
|
| QuickBird | 2047 | | |
|
|
| GaoFen-2 | 1023 | | |
|
|
| WorldView-2 | 2047 | | |
|
|
|
|
|
|
|
|
## Citation |
|
|
|
|
|
To learn more about the PanCollection dataset, see the [Github Pages](https://github.com/liangjiandeng/PanCollection). |
|
|
|
|
|
``` |
|
|
@ARTICLE{dengjig2022, |
|
|
author={邓良剑,冉燃,吴潇,张添敬}, |
|
|
journal={中国图象图形学报}, |
|
|
title={遥感图像全色锐化的卷积神经网络方法研究进展}, |
|
|
year={2022}, |
|
|
volume={}, |
|
|
number={9}, |
|
|
pages={}, |
|
|
doi={10.11834/jig.220540} |
|
|
} |
|
|
``` |
|
|
|
|
|
``` |
|
|
@ARTICLE{deng2022vivone, |
|
|
author={L. -J. Deng, G. Vivone, M. E. Paoletti, G. Scarpa, J. He, Y. Zhang, J. Chanussot, and A. Plaza}, |
|
|
journal={IEEE Geoscience and Remote Sensing Magazine}, |
|
|
title={Machine Learning in Pansharpening: A Benchmark, from Shallow to Deep Networks}, |
|
|
year={2022}, |
|
|
volume={10}, |
|
|
number={3}, |
|
|
pages={279-315}, |
|
|
doi={10.1109/MGRS.2022.3187652} |
|
|
} |
|
|
``` |
|
|
|
|
|
|
|
|
## License |
|
|
|
|
|
PanCollection is made available under the GPLv2.0 license. |
|
|
|
|
|
## Contact |
|
|
[email protected] |
|
|
|
|
|
[email protected] |