3D Slicer Medical Imaging GUI Benchmark Dataset (CSV Format)
Dataset Description
This dataset contains 315 end-to-end GUI automation tasks for 3D Slicer medical imaging software, focusing on MRI brain analysis workflows.
Dataset Summary
- Total Tasks: 315
- Total Images: 100 unique screenshots (file paths only)
- Application: 3D Slicer (medical imaging software)
- Domain: Medical imaging, MRI brain analysis
- Format: CSV with file paths (ultra memory-efficient)
Supported Tasks
- GUI automation
- Medical imaging workflows
- Visual grounding
- Action prediction
- Task planning
Dataset Structure
The dataset is provided as a CSV file with the following columns:
serial_number: Task number (1-315)task_id: Unique identifier (e.g., "3dslicer_endtoend_001")task: Natural language task descriptionimage_sequence: Screenshot sequence (→ separated)json_data: Complete task data in JSON formatnum_steps: Number of steps in the trajectorynum_images: Number of images for this taskimage_paths: Pipe-separated file paths to imagesimages_dir: Base directory for images
JSON Data Structure
The json_data field contains:
{
"id": "3dslicer_endtoend_001",
"initial_state": {
"application": "3D Slicer",
"display_resolution": [1920, 1080],
"loaded_image": "Import_Akash_Data.png"
},
"instruction": "Task description...",
"trajectory": [
{
"step": 1,
"action": "CLICK",
"target": "Load Data (Akash)",
"screenshot": "Import_Akash_Data.png",
"note": "Step 1: Interacting with UI elements",
"bbox": [1054, 0, 1089, 35]
}
],
"outputs": {
"final_file": "task_1_output.png",
"verification": {...},
"success": true
}
}
Action Types
- CLICK: Button clicks, menu selections (71.1%)
- SEGMENT: Drawing ROIs, measurements (15.9%)
- COMPLETE: Task completion (5.8%)
- TEXT: Text input (3.2%)
- ZOOM: Zoom operations (2.0%)
- SCROLL: Navigation (2.0%)
Usage
import pandas as pd
import json
from PIL import Image
import os
# Load CSV dataset
df = pd.read_csv("3dslicer_benchmark.csv")
# Access a task
task = df.iloc[0]
print(f"Task: {task['task']}")
print(f"Steps: {task['num_steps']}")
# Parse JSON data
task_json = json.loads(task['json_data'])
print(f"Trajectory: {len(task_json['trajectory'])} steps")
# Load images on-demand
image_paths = task['image_paths'].split('|')
for i, img_path in enumerate(image_paths):
if os.path.exists(img_path):
img = Image.open(img_path)
print(f"Image {i+1}: {img.size}")
Memory Efficiency
This CSV-based approach provides:
- ✅ Ultra-low memory usage - no images loaded into memory
- ✅ Fast loading - CSV loads in seconds
- ✅ Flexible access - load images only when needed
- ✅ Easy sharing - single CSV file
- ✅ Scalable - works with any number of images
Dataset Creation
This dataset was created using:
- Manual annotation of 3D Slicer workflows
- Automated bounding box extraction (red/orange/yellow highlights)
- Robust action inference with strict guardrails
- Ultra memory-efficient CSV processing
Quality Assurance
- ✅ 100% consistent actions for same UI elements
- ✅ 100% consistent bounding boxes for same screenshots
- ✅ Only CLICK actions have bounding boxes
- ✅ All bounding boxes extracted from images
- ✅ Strict guardrails prevent inconsistencies
- ✅ Ultra memory-efficient processing
Citation
@dataset{3dslicer_benchmark_2024,
title={3D Slicer Medical Imaging GUI Benchmark Dataset},
author={Rishu Kumar},
year={2024},
url={https://huggingface.co/datasets/rishuKumar404/MedUI_3DSlicer_CSV}
}
License
MIT License