MedUI_3DSlicer_CSV / README.md
rishuKumar404's picture
Upload README.md with huggingface_hub
4f9c5fa verified

3D Slicer Medical Imaging GUI Benchmark Dataset (CSV Format)

Dataset Description

This dataset contains 315 end-to-end GUI automation tasks for 3D Slicer medical imaging software, focusing on MRI brain analysis workflows.

Dataset Summary

  • Total Tasks: 315
  • Total Images: 100 unique screenshots (file paths only)
  • Application: 3D Slicer (medical imaging software)
  • Domain: Medical imaging, MRI brain analysis
  • Format: CSV with file paths (ultra memory-efficient)

Supported Tasks

  • GUI automation
  • Medical imaging workflows
  • Visual grounding
  • Action prediction
  • Task planning

Dataset Structure

The dataset is provided as a CSV file with the following columns:

  • serial_number: Task number (1-315)
  • task_id: Unique identifier (e.g., "3dslicer_endtoend_001")
  • task: Natural language task description
  • image_sequence: Screenshot sequence (→ separated)
  • json_data: Complete task data in JSON format
  • num_steps: Number of steps in the trajectory
  • num_images: Number of images for this task
  • image_paths: Pipe-separated file paths to images
  • images_dir: Base directory for images

JSON Data Structure

The json_data field contains:

{
  "id": "3dslicer_endtoend_001",
  "initial_state": {
    "application": "3D Slicer",
    "display_resolution": [1920, 1080],
    "loaded_image": "Import_Akash_Data.png"
  },
  "instruction": "Task description...",
  "trajectory": [
    {
      "step": 1,
      "action": "CLICK",
      "target": "Load Data (Akash)",
      "screenshot": "Import_Akash_Data.png",
      "note": "Step 1: Interacting with UI elements",
      "bbox": [1054, 0, 1089, 35]
    }
  ],
  "outputs": {
    "final_file": "task_1_output.png",
    "verification": {...},
    "success": true
  }
}

Action Types

  • CLICK: Button clicks, menu selections (71.1%)
  • SEGMENT: Drawing ROIs, measurements (15.9%)
  • COMPLETE: Task completion (5.8%)
  • TEXT: Text input (3.2%)
  • ZOOM: Zoom operations (2.0%)
  • SCROLL: Navigation (2.0%)

Usage

import pandas as pd
import json
from PIL import Image
import os

# Load CSV dataset
df = pd.read_csv("3dslicer_benchmark.csv")

# Access a task
task = df.iloc[0]
print(f"Task: {task['task']}")
print(f"Steps: {task['num_steps']}")

# Parse JSON data
task_json = json.loads(task['json_data'])
print(f"Trajectory: {len(task_json['trajectory'])} steps")

# Load images on-demand
image_paths = task['image_paths'].split('|')
for i, img_path in enumerate(image_paths):
    if os.path.exists(img_path):
        img = Image.open(img_path)
        print(f"Image {i+1}: {img.size}")

Memory Efficiency

This CSV-based approach provides:

  • Ultra-low memory usage - no images loaded into memory
  • Fast loading - CSV loads in seconds
  • Flexible access - load images only when needed
  • Easy sharing - single CSV file
  • Scalable - works with any number of images

Dataset Creation

This dataset was created using:

  • Manual annotation of 3D Slicer workflows
  • Automated bounding box extraction (red/orange/yellow highlights)
  • Robust action inference with strict guardrails
  • Ultra memory-efficient CSV processing

Quality Assurance

  • ✅ 100% consistent actions for same UI elements
  • ✅ 100% consistent bounding boxes for same screenshots
  • ✅ Only CLICK actions have bounding boxes
  • ✅ All bounding boxes extracted from images
  • ✅ Strict guardrails prevent inconsistencies
  • ✅ Ultra memory-efficient processing

Citation

@dataset{3dslicer_benchmark_2024,
  title={3D Slicer Medical Imaging GUI Benchmark Dataset},
  author={Rishu Kumar},
  year={2024},
  url={https://huggingface.co/datasets/rishuKumar404/MedUI_3DSlicer_CSV}
}

License

MIT License