Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a Cross Encoder model finetuned from BAAI/bge-reranker-v2-m3 using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("cross_encoder_model_id")
# Get scores for pairs of texts
pairs = [
['A Hydro Flask in a light brown color with a small hand logo.', 'A large, light-brown Hydro Flask water bottle with a darker tan cap and black accents, appears to be made of metal, and seems to be in new condition with tags still attached.'],
['A black smartphone.', 'The image shows four used smartphones, including a white and black Samsung smartphone, a black and silver phone of unknown brand, a white and black Nokia phone, and a white Apple iPhone, all appearing to be between 4 and 5 inches in screen size.'],
['A purple pencil case with a unicorn design.', 'A new, mint green hard-shell pencil case with a ribbed texture and a central circular illustration of a unicorn with a rainbow mane.'],
['A folded, dark blue umbrella has a slightly crinkled matching fabric case and its handle is still wrapped in clear plastic.', 'There are two blue umbrellas.'],
['a black messenger bag with purple stitching.', 'A gray-green backpack with black mesh padding and an orange "NANEU PRO" tag on the side.'],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'A Hydro Flask in a light brown color with a small hand logo.',
[
'A large, light-brown Hydro Flask water bottle with a darker tan cap and black accents, appears to be made of metal, and seems to be in new condition with tags still attached.',
'The image shows four used smartphones, including a white and black Samsung smartphone, a black and silver phone of unknown brand, a white and black Nokia phone, and a white Apple iPhone, all appearing to be between 4 and 5 inches in screen size.',
'A new, mint green hard-shell pencil case with a ribbed texture and a central circular illustration of a unicorn with a rainbow mane.',
'There are two blue umbrellas.',
'A gray-green backpack with black mesh padding and an orange "NANEU PRO" tag on the side.',
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
evalCEBinaryClassificationEvaluator| Metric | Value |
|---|---|
| accuracy | 0.8962 |
| accuracy_threshold | 0.2969 |
| f1 | 0.7976 |
| f1_threshold | 0.2016 |
| precision | 0.7505 |
| recall | 0.8511 |
| average_precision | 0.8669 |
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
A Hydro Flask in a light brown color with a small hand logo. |
A large, light-brown Hydro Flask water bottle with a darker tan cap and black accents, appears to be made of metal, and seems to be in new condition with tags still attached. |
1.0 |
A black smartphone. |
The image shows four used smartphones, including a white and black Samsung smartphone, a black and silver phone of unknown brand, a white and black Nokia phone, and a white Apple iPhone, all appearing to be between 4 and 5 inches in screen size. |
0.0 |
A purple pencil case with a unicorn design. |
A new, mint green hard-shell pencil case with a ribbed texture and a central circular illustration of a unicorn with a rainbow mane. |
0.0 |
BinaryCrossEntropyLoss with these parameters:{
"activation_fn": "torch.nn.modules.linear.Identity",
"pos_weight": null
}
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}| Epoch | Step | Training Loss | eval_average_precision |
|---|---|---|---|
| 0.1175 | 500 | 0.3493 | 0.7918 |
| 0.2351 | 1000 | 0.3064 | 0.8216 |
| 0.3526 | 1500 | 0.2832 | 0.8328 |
| 0.4701 | 2000 | 0.2873 | 0.8408 |
| 0.5877 | 2500 | 0.2866 | 0.8502 |
| 0.7052 | 3000 | 0.2797 | 0.8499 |
| 0.8228 | 3500 | 0.2737 | 0.8525 |
| 0.9403 | 4000 | 0.2724 | 0.8563 |
| 1.0 | 4254 | - | 0.8587 |
| 1.0578 | 4500 | 0.2718 | 0.8565 |
| 1.1754 | 5000 | 0.264 | 0.8561 |
| 1.2929 | 5500 | 0.2642 | 0.8584 |
| 1.4104 | 6000 | 0.2604 | 0.8582 |
| 1.5280 | 6500 | 0.2593 | 0.8595 |
| 1.6455 | 7000 | 0.2498 | 0.8628 |
| 1.7630 | 7500 | 0.2515 | 0.8649 |
| 1.8806 | 8000 | 0.2504 | 0.8650 |
| 1.9981 | 8500 | 0.2624 | 0.8643 |
| 2.0 | 8508 | - | 0.8632 |
| 2.1157 | 9000 | 0.2481 | 0.8662 |
| 2.2332 | 9500 | 0.2483 | 0.8661 |
| 2.3507 | 10000 | 0.2543 | 0.8647 |
| 2.4683 | 10500 | 0.2473 | 0.8669 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Base model
BAAI/bge-reranker-v2-m3