AI & ML interests

None defined yet.

Recent Activity

Articles

evijit 
posted an update 2 months ago
view post
Post
2556
AI for Scientific Discovery Won't Work Without Fixing How We Collaborate.

My co-author @cgeorgiaw and I just published a paper challenging a core assumption: that the main barriers to AI in science are technical. They're not. They're social.

Key findings:

🚨 The "AI Scientist" myth delays progress: Waiting for AGI devalues human expertise and obscures science's real purpose: cultivating understanding, not just outputs.
📊 Wrong incentives: Datasets have 100x longer impact than models, yet data curation is undervalued.
⚠️ Broken collaboration: Domain scientists want understanding. ML researchers optimize performance. Without shared language, projects fail.
🔍 Fragmentation costs years: Harmonizing just 9 cancer files took 329 hours.

Why this matters: Upstream bottlenecks like efficient PDE solvers could accelerate discovery across multiple sciences. CASP mobilized a community around protein structure, enabling AlphaFold. We need this for dozens of challenges.

Thus, we're launching Hugging Science! A global community addressing these barriers through collaborative challenges, open toolkits, education, and community-owned infrastructure. Please find all the links below!

Paper: AI for Scientific Discovery is a Social Problem (2509.06580)
Join: hugging-science
Discord: https://discord.com/invite/VYkdEVjJ5J
davanstrien 
posted an update 3 months ago
evijit 
posted an update 5 months ago
view post
Post
400
New blog post alert! "What is the Hugging Face Community Building?", with @yjernite and @irenesolaiman

What 1.8 Million Models Reveal About Open Source Innovation: Our latest deep dive into the Hugging Face Hub reveals patterns that challenge conventional AI narratives:

🔗 Models become platforms for innovation Qwen, Llama, and Gemma models have spawned entire ecosystems of specialized variants. Looking at derivative works shows community adoption better than any single metric.

📊 Datasets reveal the foundation layer → Most downloaded datasets are evaluation benchmarks (MMLU, Squad, GLUE) → Universities and research institutions dominate foundational data → Domain-specific datasets thrive across finance, healthcare, robotics, and science → Open actors provide the datasets that power most AI development

🏛️ Research institutions lead the charge: AI2 (Allen Institute) emerges as one of the most active contributors, alongside significant activity from IBM, NVIDIA, and international organizations. The open source ecosystem spans far beyond Big Tech.

🔍 Interactive exploration tools: We've built several tools to help you discover patterns!

ModelVerse Explorer - organizational contributions
DataVerse Explorer - dataset patterns
Organization HeatMap - activity over time
Base Model Explorer - model family trees
Semantic Search - find models by capability

📚 Academic research is thriving: Researchers are already producing valuable insights, including recent work at FAccT 2025: "The Brief and Wondrous Life of Open Models." We've also made hub datasets, weekly snapshots, and other data available for your own analysis.

The bottom line: AI development is far more distributed, diverse, and collaborative than popular narratives suggest. Real innovation happens through community collaboration across specialized domains.

Read: https://huggingface.co/blog/evijit/hf-hub-ecosystem-overview
reach-vb 
posted an update 6 months ago
view post
Post
5973
Excited to onboard FeatherlessAI on Hugging Face as an Inference Provider - they bring a fleet of 6,700+ LLMs on-demand on the Hugging Face Hub 🤯

Starting today, you'd be able to access all those LLMs (OpenAI compatible) on HF model pages and via OpenAI client libraries too! 💥

Go, play with it today: https://huggingface.co/blog/inference-providers-featherless

P.S. They're also bringing on more GPUs to support all your concurrent requests!
  • 1 reply
¡
davanstrien 
posted an update 6 months ago
view post
Post
3652
Inspired by Hugging Face's official MCP server, I've developed a complementary tool that exposes my semantic search API to enhance discovery across the HF platform.

Key capabilities:

- AI-powered semantic search for models and datasets
- Parameter count analysis via safetensors metadata
- Trending content discovery
- Find similar models/datasets functionality
- 11 tools total for enhanced ecosystem navigation

The semantic search goes beyond simple keyword matching, understanding context and relationships between different models and datasets.

Example query: "Find around 10 reasoning Hugging Face datasets published in 2025 focusing on topics other than maths and science. Show a link and a short summary for each dataset." (results in video!)

https://github.com/davanstrien/hub-semantic-search-mcp
  • 1 reply
¡
evijit 
posted an update 6 months ago
reach-vb 
posted an update 7 months ago
view post
Post
4642
hey hey @mradermacher - VB from Hugging Face here, we'd love to onboard you over to our optimised xet backend! 💥

as you know we're in the process of upgrading our storage backend to xet (which helps us scale and offer blazingly fast upload/ download speeds too): https://huggingface.co/blog/xet-on-the-hub and now that we are certain that the backend can scale with even big models like Llama 4/ Qwen 3 - we;re moving to the next phase of inviting impactful orgs and users on the hub over as you are a big part of the open source ML community - we would love to onboard you next and create some excitement about it in the community too!

in terms of actual steps - it should be as simple as one of the org admins to join hf.co/join/xet - we'll take care of the rest.

p.s. you'd need to have a the latest hf_xet version of huggingface_hub lib but everything else should be the same: https://huggingface.co/docs/hub/storage-backends#using-xet-storage

p.p.s. this is fully backwards compatible so everything will work as it should! 🤗
¡
davanstrien 
posted an update 8 months ago
view post
Post
2370
Came across a very nice submission from @marcodsn for the reasoning datasets competition (https://huggingface.co/blog/bespokelabs/reasoning-datasets-competition).

The dataset distils reasoning chains from arXiv research papers in biology and economics. Some nice features of the dataset:

- Extracts both the logical structure AND researcher intuition from academic papers
- Adopts the persona of researchers "before experiments" to capture exploratory thinking
- Provides multi-short and single-long reasoning formats with token budgets - Shows 7.2% improvement on MMLU-Pro Economics when fine-tuning a 3B model

It's created using the Curator framework with plans to scale across more scientific domains and incorporate multi-modal reasoning with charts and mathematics.

I personally am very excited about datasets like this, which involve creativity in their creation and don't just rely on $$$ to produce a big dataset with little novelty.

Dataset can be found here: marcodsn/academic-chains (give it a like!)
davanstrien 
posted an update 8 months ago
view post
Post
1767
I've created a v1 dataset ( davanstrien/reasoning-required) and model ( davanstrien/ModernBERT-based-Reasoning-Required) to help curate "wild text" data for generating reasoning examples beyond the usual code/math/science domains.

- I developed a "Reasoning Required" dataset with a 0-4 scoring system for reasoning complexity
- I used educational content from HuggingFaceFW/fineweb-edu, adding annotations for domains, reasoning types, and example questions

My approach enables a more efficient workflow: filter text with small models first, then use LLMs only on high-value content.

This significantly reduces computation costs while expanding reasoning dataset domain coverage.
not-lain 
posted an update 9 months ago