ImageNette resnet50-pytorch
Model Description
resnet50-pytorch trained on 10-class ImageNet subset (ImageNette) with advanced augmentation techniques.
Model Architecture
- Architecture: resnet50-pytorch
- Dataset: ImageNette
- Classes: 10
Training Configuration
- Batch Size: 128
- Optimizer: sgd (momentum=0.9, weight_decay=1e-3)
- Scheduler: onecycle
- Augmentation: HorizontalFlip, ShiftScaleRotate, Cutout, ColorJitter
- MixUp: Alpha=0.2
- Label Smoothing: 0.1
- Mixed Precision: True
- Gradient Clipping: 1.0
Performance
- Best Test Accuracy: 57.30%
- Total Epochs Trained: 10
- Final Train Accuracy: 46.22%
- Final Test Accuracy: 57.30%
Training History
- Best Epoch: 10
- Train Loss: 2.4472 โ 1.7581
- Test Loss: 3.4594 โ 1.3567
Usage
import torch
from huggingface_hub import hf_hub_download
# Download model
checkpoint_path = hf_hub_download(
repo_id="pandurangpatil/imagenet10trial",
filename="best_model.pth"
)
# Load checkpoint
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False)
# Load model (you'll need to have the model definition)
# from models import get_model
# model = get_model('resnet50-pytorch', num_classes=10)
# model.load_state_dict(checkpoint['model_state_dict'])
# model.eval()
Training Details
- Dataset: ImageNette (9469 train, 3925 test)
- Classes: 10
- Image Size: 160ร160 or 224ร224
- Normalization: mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)
Files
best_model.pth- Best performing model checkpointtraining_curves.png- Training/test accuracy and loss curveslr_finder_plot.png- Learning rate finder resultsmetrics.json- Complete training historyconfig.json- Hyperparameter configuration
License
MIT
Citation
@misc{resnet50-pytorch-imagenette,
title = {ImageNette resnet50-pytorch},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/pandurangpatil/imagenet10trial}
}
- Downloads last month
- 10