SentenceTransformer based on sergeyzh/LaBSE-ru-sts
This is a sentence-transformers model finetuned from sergeyzh/LaBSE-ru-sts on the data_cross_gpt_139k dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sergeyzh/LaBSE-ru-sts
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("seregadgl/sts_v11")
sentences = [
'комод 7 рисунком машинки 4 ящика',
'комод 8 с изображением супергероев 6 ящиков',
'беззеркальный фотоаппарат nikon z50 kit 16-50mm ilce-7cl красный',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.9723 |
| cosine_accuracy_threshold |
0.6305 |
| cosine_f1 |
0.9724 |
| cosine_f1_threshold |
0.5822 |
| cosine_precision |
0.9648 |
| cosine_recall |
0.9802 |
| cosine_ap |
0.9946 |
| cosine_mcc |
0.9445 |
Training Details
Training Dataset
data_cross_gpt_139k
Evaluation Dataset
data_cross_gpt_139k
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
learning_rate: 4.7459131195420915e-05
weight_decay: 0.03196240090522689
num_train_epochs: 2
warmup_ratio: 0.014344463935915175
fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 32
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 4.7459131195420915e-05
weight_decay: 0.03196240090522689
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 2
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.014344463935915175
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size: 0
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
eval_cosine_ap |
| 0.0287 |
100 |
0.189 |
- |
- |
| 0.0574 |
200 |
0.0695 |
- |
- |
| 0.0861 |
300 |
0.067 |
- |
- |
| 0.1148 |
400 |
0.0643 |
- |
- |
| 0.1435 |
500 |
0.0594 |
0.0549 |
0.9862 |
| 0.1722 |
600 |
0.0565 |
- |
- |
| 0.2009 |
700 |
0.0535 |
- |
- |
| 0.2296 |
800 |
0.0506 |
- |
- |
| 0.2583 |
900 |
0.0549 |
- |
- |
| 0.2870 |
1000 |
0.0535 |
0.0451 |
0.9888 |
| 0.3157 |
1100 |
0.0492 |
- |
- |
| 0.3444 |
1200 |
0.0499 |
- |
- |
| 0.3731 |
1300 |
0.0486 |
- |
- |
| 0.4018 |
1400 |
0.0458 |
- |
- |
| 0.4305 |
1500 |
0.0458 |
0.0419 |
0.9877 |
| 0.4592 |
1600 |
0.0502 |
- |
- |
| 0.4879 |
1700 |
0.045 |
- |
- |
| 0.5166 |
1800 |
0.0435 |
- |
- |
| 0.5454 |
1900 |
0.0426 |
- |
- |
| 0.5741 |
2000 |
0.0422 |
0.0386 |
0.9906 |
| 0.6028 |
2100 |
0.0436 |
- |
- |
| 0.6315 |
2200 |
0.043 |
- |
- |
| 0.6602 |
2300 |
0.0432 |
- |
- |
| 0.6889 |
2400 |
0.0397 |
- |
- |
| 0.7176 |
2500 |
0.0394 |
0.0357 |
0.9903 |
| 0.7463 |
2600 |
0.039 |
- |
- |
| 0.7750 |
2700 |
0.0398 |
- |
- |
| 0.8037 |
2800 |
0.0394 |
- |
- |
| 0.8324 |
2900 |
0.0426 |
- |
- |
| 0.8611 |
3000 |
0.0345 |
0.0341 |
0.9921 |
| 0.8898 |
3100 |
0.0361 |
- |
- |
| 0.9185 |
3200 |
0.0365 |
- |
- |
| 0.9472 |
3300 |
0.0401 |
- |
- |
| 0.9759 |
3400 |
0.0391 |
- |
- |
| 1.0046 |
3500 |
0.0342 |
0.0310 |
0.9928 |
| 1.0333 |
3600 |
0.0267 |
- |
- |
| 1.0620 |
3700 |
0.0264 |
- |
- |
| 1.0907 |
3800 |
0.0263 |
- |
- |
| 1.1194 |
3900 |
0.0248 |
- |
- |
| 1.1481 |
4000 |
0.0282 |
0.0301 |
0.9928 |
| 1.1768 |
4100 |
0.0279 |
- |
- |
| 1.2055 |
4200 |
0.0258 |
- |
- |
| 1.2342 |
4300 |
0.0248 |
- |
- |
| 1.2629 |
4400 |
0.0289 |
- |
- |
| 1.2916 |
4500 |
0.0261 |
0.0291 |
0.9935 |
| 1.3203 |
4600 |
0.0262 |
- |
- |
| 1.3490 |
4700 |
0.0276 |
- |
- |
| 1.3777 |
4800 |
0.0256 |
- |
- |
| 1.4064 |
4900 |
0.0272 |
- |
- |
| 1.4351 |
5000 |
0.0283 |
0.0284 |
0.9939 |
| 1.4638 |
5100 |
0.0254 |
- |
- |
| 1.4925 |
5200 |
0.0252 |
- |
- |
| 1.5212 |
5300 |
0.0234 |
- |
- |
| 1.5499 |
5400 |
0.0228 |
- |
- |
| 1.5786 |
5500 |
0.0248 |
0.0277 |
0.9941 |
| 1.6073 |
5600 |
0.024 |
- |
- |
| 1.6361 |
5700 |
0.0225 |
- |
- |
| 1.6648 |
5800 |
0.0234 |
- |
- |
| 1.6935 |
5900 |
0.0226 |
- |
- |
| 1.7222 |
6000 |
0.0248 |
0.0265 |
0.9942 |
| 1.7509 |
6100 |
0.0247 |
- |
- |
| 1.7796 |
6200 |
0.0219 |
- |
- |
| 1.8083 |
6300 |
0.026 |
- |
- |
| 1.8370 |
6400 |
0.0209 |
- |
- |
| 1.8657 |
6500 |
0.0252 |
0.0262 |
0.9945 |
| 1.8944 |
6600 |
0.0218 |
- |
- |
| 1.9231 |
6700 |
0.0223 |
- |
- |
| 1.9518 |
6800 |
0.0228 |
- |
- |
| 1.9805 |
6900 |
0.0242 |
- |
- |
| 2.0 |
6968 |
- |
0.0257 |
0.9946 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}