File size: 42,584 Bytes
cf02b2b
 
 
 
 
 
 
a2ca191
cf02b2b
 
 
 
 
 
4a1bc78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4df145c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1bc78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4df145c
 
 
 
 
 
 
 
 
82583bd
4df145c
82583bd
 
 
 
 
 
 
 
 
 
 
 
4df145c
 
 
 
82583bd
4df145c
82583bd
 
 
 
 
 
 
 
 
 
 
 
4df145c
 
 
 
82583bd
4df145c
82583bd
 
 
 
 
 
 
 
 
 
 
 
4df145c
 
 
82583bd
4df145c
82583bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1bc78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82583bd
 
 
 
 
 
 
 
 
4df145c
82583bd
 
 
 
 
 
 
 
4df145c
 
 
 
cf02b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9d3d0b
cf02b2b
a2ca191
 
cf02b2b
 
 
a2ca191
 
 
 
 
 
 
 
 
 
 
f9d3d0b
 
8531433
a678780
8531433
a678780
4a1bc78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a678780
 
 
 
ecd279c
 
a678780
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a1bc78
 
 
 
 
 
 
 
 
 
 
 
8531433
 
 
afe5327
 
 
 
f9d3d0b
 
 
8531433
 
82583bd
 
 
 
 
f9d3d0b
82583bd
f9d3d0b
8531433
f9d3d0b
82583bd
852aa39
8531433
2b5cde1
8531433
f9d3d0b
8531433
 
 
 
 
 
2b5cde1
8531433
2b5cde1
 
a678780
2b5cde1
 
 
60ce103
2b5cde1
 
 
 
e0ad8eb
2b5cde1
 
 
 
60ce103
2b5cde1
 
8531433
2b5cde1
ecd279c
2b5cde1
8531433
 
 
ecd279c
 
8531433
2b5cde1
 
 
 
 
 
 
 
 
 
8531433
2b5cde1
8531433
2b5cde1
8531433
 
 
2b5cde1
8531433
 
2b5cde1
061a93c
 
 
 
4a1bc78
 
f9d3d0b
061a93c
 
 
 
 
 
 
f9d3d0b
 
 
 
cf02b2b
f9d3d0b
 
cf02b2b
f9d3d0b
cf02b2b
f9d3d0b
cf02b2b
 
 
 
 
 
 
 
 
f9d3d0b
 
 
 
 
 
 
cf02b2b
 
f9d3d0b
cf02b2b
 
061a93c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf02b2b
061a93c
 
 
 
 
 
 
f9d3d0b
cf02b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d371c7
 
cf02b2b
5d371c7
7807a49
3df14a5
 
 
 
 
 
 
5d371c7
3df14a5
 
 
 
 
 
5d371c7
3df14a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d371c7
3df14a5
 
 
 
 
 
 
 
 
 
5d371c7
3df14a5
5d371c7
 
 
3df14a5
7807a49
 
5d371c7
 
 
cf02b2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_core.tools import tool
from config import EMBEDDING_MODEL_NAME
from langchain_core.runnables import RunnableConfig
from typing import List, Dict, Any
from lancedb_service import lancedb_service
from scenario_analysis_service import scenario_service
from enhanced_search_service import enhanced_search_service
import logging
import json
import asyncio

logger = logging.getLogger("voicebot")

def generate_role_based_checklist(query: str, content: str) -> list:
    """Generate role-specific checklists based on query and content"""
    query_lower = query.lower()
    content_lower = content.lower() if content else ""
    
    # Pension Beneficiaries & Claimants
    if any(phrase in query_lower for phrase in ['pension eligibility', 'pension documents', 'how to apply pension', 'pension application']):
        return [
            "Verify service eligibility (minimum 10 years qualifying service)",
            "Gather required documents (service book, PPO, identity proof)",
            "Check for any departmental proceedings or vigilance cases",
            "Apply through proper channel 6 months before retirement",
            "Follow up with pension disbursing authority for processing"
        ]
    elif any(phrase in query_lower for phrase in ['family pension', 'widow pension', 'dependent pension']):
        return [
            "Obtain death certificate and service documents of deceased employee",
            "Submit family pension application with nominee details", 
            "Provide proof of relationship and dependency",
            "Get certificate from employer about last drawn salary",
            "Register with pension disbursing bank for regular payments"
        ]
    elif 'pension calculation' in query_lower or 'pension amount' in query_lower:
        return [
            "Collect last pay certificate with basic pay and DA details",
            "Calculate qualifying service excluding breaks/suspensions",
            "Apply pension formula: (Last pay Γ— service years) Γ· 70",
            "Check for minimum pension ceiling and DA applicability",
            "Verify commutation options if considering lump sum"
        ]
    
    # Procurement Officers & Bidders  
    elif any(phrase in query_lower for phrase in ['tender process', 'bid submission', 'procurement threshold']):
        return [
            "Verify procurement threshold limits and delegation of powers",
            "Check MSME purchase preference and price benefits applicable",
            "Ensure technical specifications are non-discriminatory",
            "Follow mandatory e-procurement process through GeM/portal",
            "Maintain proper documentation for audit trail"
        ]
    elif any(phrase in query_lower for phrase in ['msme relaxation', 'msme benefits']):
        return [
            "Verify MSME registration certificate validity",
            "Apply 15% price preference for MSME quotes",
            "Check exemption from EMD (Earnest Money Deposit)",
            "Ensure MSME gets advance payment facility if applicable",
            "Follow tender splitting norms for MSME participation"
        ]
    elif any(phrase in query_lower for phrase in ['gem portal', 'vendor registration']):
        return [
            "Complete vendor registration on Government e-Marketplace",
            "Upload all required business documents and certificates",
            "Get product/service catalog approved by GeM",
            "Maintain competitive pricing and service ratings",
            "Respond promptly to buyer inquiries and orders"
        ]
    
    # Finance Staff
    elif any(phrase in query_lower for phrase in ['sanctioning authority', 'financial approval', 'expenditure sanction']):
        return [
            "Verify delegated financial powers and approval limits",
            "Check budget provision and availability of funds",
            "Ensure compliance with financial rules and procedures",
            "Obtain necessary pre-audit clearance if required",
            "Maintain proper accounting and audit trail"
        ]
    elif any(phrase in query_lower for phrase in ['budget allocation', 'fund release']):
        return [
            "Verify budget allocation in approved estimates",
            "Check fund availability in treasury/bank account",
            "Ensure proper budget head classification",
            "Follow fund release schedule and priority guidelines",
            "Update budget utilization registers promptly"
        ]
    elif any(phrase in query_lower for phrase in ['audit compliance', 'financial audit']):
        return [
            "Maintain all vouchers and supporting documents",
            "Ensure transactions are recorded in proper registers",
            "Respond to audit queries within stipulated time",
            "Implement audit recommendations and report compliance",
            "Conduct internal audit and review before external audit"
        ]
    
    # Leadership & Policymakers
    elif any(phrase in query_lower for phrase in ['policy impact', 'scenario analysis']):
        return [
            "Gather baseline data and impact measurement parameters",
            "Conduct stakeholder consultation and feedback analysis",
            "Prepare cost-benefit analysis for different scenarios",
            "Assess implementation feasibility and resource requirements",
            "Develop monitoring and evaluation framework"
        ]
    elif any(phrase in query_lower for phrase in ['evidence pack', 'policy brief']):
        return [
            "Compile relevant policy documents and legal framework",
            "Gather statistical data and trend analysis",
            "Include comparative analysis from other states/countries",
            "Prepare executive summary with key recommendations",
            "Ensure all sources are cited and verifiable"
        ]
    
    # General categories with enhanced checklists
    elif "pension" in query_lower:
        return [
            "Check eligibility criteria and service requirements",
            "Collect required documents (service book, PPO, ID proof)",
            "Obtain necessary approvals and clearances",
            "Submit application through proper channel",
            "Follow up with pension office for processing status"
        ]
    elif any(word in query_lower for word in ["procurement", "tender", "bid"]):
        return [
            "Review procurement guidelines and threshold limits",
            "Check MSME relaxations and price preferences",
            "Prepare comprehensive bid documents",
            "Ensure compliance with technical specifications",
            "Submit bid through approved e-procurement platform"
        ]
    elif any(word in query_lower for word in ["finance", "budget", "expenditure"]):
        return [
            "Verify financial delegation and approval limits",
            "Check budget provision and fund availability",
            "Ensure compliance with treasury and accounting rules",
            "Maintain proper documentation for audit",
            "Update financial registers and reports"
        ]
    elif "leave" in query_lower:
        return [
            "Check leave balance and entitlement",
            "Follow prescribed application procedure",
            "Obtain necessary approvals from competent authority",
            "Arrange work coverage during leave period",
            "Update attendance records upon return"
        ]
    else:
        return [
            "Review relevant policy guidelines and procedures",
            "Consult with appropriate authorities if needed",
            "Ensure compliance with applicable rules",
            "Maintain proper documentation",
            "Seek clarification for any doubts"
        ]

# Fallback content for when database is empty
FALLBACK_CONTENT = {
    "pension": """Pension is a regular payment made during a person's retirement from an investment fund. For government employees in India, pension includes:

1. Basic Pension: Calculated based on last drawn salary and years of service
2. Dearness Relief (DR): Additional amount to counter inflation  
3. Medical Benefits: Healthcare coverage post-retirement
4. Family Pension: Benefits for family members

Key features:
- Minimum 10 years service for qualification
- Monthly payment to retired employees
- Pension amount revised periodically for inflation""",
    
    "da_increment": """Dearness Allowance (DA) is paid to government employees to offset inflation impact. 

DA 6% Increment Impact:
- DA revised twice yearly (January and July)
- Based on Consumer Price Index (AICPI)
- 6% increase adds significant monthly income
- Example: β‚Ή50,000 basic salary gets β‚Ή3,000 additional per month
- Pensioners get corresponding Dearness Relief increase
- Applicable across all government pay scales""",
    
    "rajasthan": """Rajasthan government employees have comprehensive retirement benefits:

1. Old Pension Scheme (OPS): Restored for all employees in 2022
   - 50% of last drawn salary after 33 years
   - Family pension available
   
2. Pension Processing:
   - Apply 6 months before retirement
   - 3-6 months processing time
   - Monthly credit via NEFT

3. Benefits include pension, gratuity, and provident fund
4. Enhanced benefits for teachers and staff""",

    "procurement": """Government Procurement Guidelines:

1. Threshold Limits:
   - Goods: β‚Ή25,000 to β‚Ή25 lakh (departmental purchase committee)
   - Works: β‚Ή1 lakh to β‚Ή5 crore (various committees)
   - Services: As per delegation of powers

2. MSME Benefits:
   - 15% price preference in competitive bids
   - Exemption from EMD (Earnest Money Deposit)
   - No tender fee for MSME enterprises
   - Advance payment facility available

3. GeM Portal Usage:
   - Mandatory for central government purchases
   - Direct purchase up to β‚Ή5 lakh
   - Rate contract for common items""",

    "finance": """Financial Management Guidelines:

1. Sanctioning Authority:
   - As per delegation of financial powers
   - Budget provision must be available
   - Pre-audit clearance where required

2. Documentation:
   - All expenditure must have proper vouchers
   - Budget registers to be maintained
   - Audit trail for all transactions

3. Treasury Rules:
   - Follow prescribed payment procedures
   - Maintain cash book and other registers
   - Submit periodic returns and statements"""
}

def get_fallback_content(query: str) -> List[Dict[str, Any]]:
    """Return fallback content when database search fails"""
    query_lower = query.lower()
    
    results = []
    
    if any(word in query_lower for word in ["pension", "retirement"]):
        content = FALLBACK_CONTENT["pension"]
        results.append({
            "clause_text": content,
            "summary": "Government pension benefits including basic pension, dearness relief, and medical benefits for retired employees.",
            "role_checklist": [
                "Check eligibility (minimum 10 years service)",
                "Gather required documents (service book, ID proof)",
                "Apply 6 months before retirement",
                "Follow up with pension office for processing"
            ],
            "source_title": "Government Pension Guide",
            "clause_id": "PENSION_001",
            "date": "2024",
            "url": "",
            "score": 0.9
        })
    
    if any(word in query_lower for word in ["da", "dearness", "allowance", "increment", "6%"]):
        content = FALLBACK_CONTENT["da_increment"]
        results.append({
            "clause_text": content,
            "summary": "Dearness Allowance is revised twice yearly to offset inflation impact on government employee salaries.",
            "role_checklist": [
                "Check current DA percentage rates",
                "Calculate impact on monthly salary",
                "Verify automatic application in pay slip",
                "Understand revision schedule (January & July)"
            ],
            "source_title": "DA Increment Guidelines",
            "clause_id": "DA_001", 
            "date": "2024",
            "url": "",
            "score": 0.9
        })
    
    if any(word in query_lower for word in ["rajasthan", "state"]):
        content = FALLBACK_CONTENT["rajasthan"]
        results.append({
            "clause_text": content,
            "summary": "Rajasthan government restored Old Pension Scheme (OPS) in 2022 with enhanced retirement benefits.",
            "role_checklist": [
                "Verify OPS eligibility and coverage",
                "Apply 6 months before retirement date",
                "Collect all required service documents",
                "Track processing status through pension office"
            ],
            "source_title": "Rajasthan Pension Rules",
            "clause_id": "RAJ_001",
            "date": "2024", 
            "url": "",
            "score": 0.9
        })
    
    # If no specific match, return query-relevant response
    if not results:
        # Generate a more intelligent fallback based on the query
        if any(word in query_lower for word in ["salary", "pay", "increment", "grade"]):
            fallback_text = f"I understand you're asking about '{query}'. While I don't have specific documents loaded for this query, government pay and salary matters typically involve pay commission recommendations, grade pay structures, and periodic revisions. For accurate information about your specific query, please consult the latest government circulars or contact your administrative office."
            checklist = [
                "Check latest pay commission guidelines",
                "Consult current government circulars", 
                "Contact administrative/accounts office",
                "Verify with official government portals"
            ]
        elif any(word in query_lower for word in ["leave", "holiday", "casual", "earned"]):
            fallback_text = f"Regarding your query about '{query}', government leave rules typically cover casual leave, earned leave, medical leave, and other statutory leaves. Each type has specific eligibility criteria and application procedures."
            checklist = [
                "Check leave balance and entitlement",
                "Follow proper application procedure",
                "Obtain necessary approvals",
                "Maintain leave records"
            ]
        elif any(word in query_lower for word in ["audit", "financial", "budget", "expenditure", "accounts"]):
            fallback_text = f"Regarding your query about '{query}', government financial audits and accounts are typically maintained at departmental and central levels. Financial audits cover budget utilization, expenditure patterns, and compliance with financial rules. For specific audit reports, you would need to access official government finance portals or contact the concerned audit department."
            checklist = [
                "Contact Controller and Auditor General (CAG) office",
                "Check government finance portals for audit reports",
                "Request specific financial year audit documents",
                "Verify with concerned department's accounts section"
            ]
        elif any(word in query_lower for word in ["training", "development", "skill", "course"]):
            fallback_text = f"Regarding your query about '{query}', government training and development programs are designed to enhance employee capabilities. These include induction training, skill development courses, leadership programs, and specialized technical training through various government training institutes."
            checklist = [
                "Check available training programs in your department",
                "Contact training institutes for course details",
                "Apply for relevant skill development programs",
                "Utilize online learning platforms like iGOT Karmayogi"
            ]
        else:
            fallback_text = f"I understand you're asking about '{query}'. While I don't have specific documents loaded for this query, I can help with government policies, pension rules, allowances, and administrative procedures. Please try rephrasing your question or ask about specific government benefits."
            checklist = [
                "Clarify your specific query area",
                "Check if documents are available in system",
                "Contact relevant government office",
                "Try alternative search terms"
            ]
            
        results.append({
            "clause_text": fallback_text,
            "summary": f"General guidance for query: {query}",
            "role_checklist": checklist,
            "source_title": "Voice Bot Assistant",
            "clause_id": "ASSIST_001",
            "date": "2024",
            "url": "",
            "score": 0.7
        })
    
    return results[:2]  # Return max 2 fallback documents

# Setup embedding model
embedding_model = HuggingFaceEmbeddings(
    model_name=EMBEDDING_MODEL_NAME,
    model_kwargs={
        "device": "cpu",
        "trust_remote_code": True
    },
    encode_kwargs={
        "normalize_embeddings": True
    }
)

async def get_user_knowledge_bases(userid: str) -> List[str]:
    """Get all knowledge bases for a user"""
    try:
        return await lancedb_service.get_user_knowledge_bases(userid)
    except Exception as e:
        logger.error(f"❌ Error fetching knowledge bases: {e}")
        return []

async def get_kb_documents(user_id: str, kb_name: str):
    """Get all documents in a knowledge base"""
    try:
        return await lancedb_service.get_kb_documents(user_id, kb_name)
    except Exception as e:
        logger.error(f"❌ Error fetching documents: {e}")
        return []

async def delete_document_from_kb(user_id: str, kb_name: str, filename: str):
    """Delete a document from knowledge base"""
    try:
        return await lancedb_service.delete_document_from_kb(user_id, kb_name, filename)
    except Exception as e:
        logger.error(f"❌ Error deleting document: {e}")
        return False

async def search_documents_async(query: str, limit: int = 5) -> List[Dict[str, Any]]:
    """
    Enhanced async search for documents in government knowledge base (1500+ docs).
    Uses advanced search strategies to find the most relevant documents.
    Returns a list of documents with content for compatibility with existing code.
    """
    try:
        # Use enhanced search service for better results with large document collections
        logger.info(f"πŸ” Enhanced search for: '{query}' (limit: {limit})")
        
        # First try enhanced search (specifically good for pension queries)
        results = await enhanced_search_service.search_with_fallback(query, limit)
        
        if results:
            logger.info(f"βœ… Enhanced search found {len(results)} documents")
            return results
        
        # Fallback to original logic with enhanced query
        knowledge_bases = ["government_docs"]  # Default
        query_lower = query.lower()
        
        # Enhance query for better relevance based on category
        enhanced_query = query
        
        # Role-specific query enhancement
        
        # Pension Beneficiary queries
        if any(word in query_lower for word in ["pension eligibility", "pension documents", "how to apply pension", "pension certificate"]):
            enhanced_query = f"{query} pension eligibility documents application process beneficiary requirements"
        elif any(word in query_lower for word in ["family pension", "widow pension", "dependent pension"]):
            enhanced_query = f"{query} family pension eligibility widow dependent benefits"
        elif any(word in query_lower for word in ["pension calculation", "pension amount", "pension formula"]):
            enhanced_query = f"{query} pension calculation formula amount computation service years"
        
        # Procurement Officer queries
        elif any(word in query_lower for word in ["tender process", "bid submission", "procurement threshold"]):
            enhanced_query = f"{query} procurement tender bidding process thresholds guidelines"
        elif any(word in query_lower for word in ["msme relaxation", "msme benefits", "small scale industry"]):
            enhanced_query = f"{query} msme relaxation benefits procurement small scale industry"
        elif any(word in query_lower for word in ["gem portal", "vendor registration", "vendor empanelment"]):
            enhanced_query = f"{query} gem portal vendor registration empanelment process"
        
        # Finance Staff queries
        elif any(word in query_lower for word in ["sanctioning authority", "financial approval", "expenditure sanction"]):
            enhanced_query = f"{query} sanctioning authority financial approval expenditure delegation"
        elif any(word in query_lower for word in ["budget allocation", "fund release", "treasury"]):
            enhanced_query = f"{query} budget allocation fund release treasury rules procedures"
        elif any(word in query_lower for word in ["audit compliance", "financial audit", "audit report"]):
            enhanced_query = f"{query} audit compliance financial audit reporting procedures"
        
        # Leadership/Policymaker queries
        elif any(word in query_lower for word in ["policy impact", "scenario analysis", "comparative analysis"]):
            enhanced_query = f"{query} policy impact scenario analysis comparison evidence"
        elif any(word in query_lower for word in ["evidence pack", "policy brief", "decision support"]):
            enhanced_query = f"{query} evidence pack policy brief decision support documentation"
        
        # General category queries
        elif "pension" in query_lower:
            if any(word in query_lower for word in ["changes", "impact", "rules"]):
                enhanced_query = f"{query} pension rules retirement benefits modifications"
            elif "calculation" in query_lower or "formula" in query_lower:
                enhanced_query = f"{query} pension calculation retirement benefits formula"
            elif any(word in query_lower for word in ["old age", "elderly", "senior", "old"]):
                enhanced_query = f"{query} pension retirement benefits elderly old age senior citizen"
        
        # Leave queries  
        elif any(word in query_lower for word in ["leave", "casual", "earned"]):
            enhanced_query = f"{query} leave rules entitlement policy"
            
        # Allowance queries
        elif any(word in query_lower for word in ["allowance", "da", "dearness"]):
            enhanced_query = f"{query} allowance rates dearness increment"
            
        # Procurement queries
        elif any(word in query_lower for word in ["tender", "procurement", "bid"]):
            enhanced_query = f"{query} procurement tender bidding process"
            
        # Medical queries
        elif any(word in query_lower for word in ["medical", "health", "reimbursement"]):
            enhanced_query = f"{query} medical health reimbursement cghs"
            
        # Transfer queries
        elif any(word in query_lower for word in ["transfer", "posting"]):
            enhanced_query = f"{query} transfer posting policy rules"
            
        # Audit and financial queries
        elif any(word in query_lower for word in ["audit", "financial", "budget", "expenditure", "accounts", "finance"]):
            enhanced_query = f"{query} audit financial budget expenditure accounts"
            
        # Training and development queries
        elif any(word in query_lower for word in ["training", "development", "course", "skill"]):
            enhanced_query = f"{query} training development skill course capacity building"
            
        # Salary and pay queries
        elif any(word in query_lower for word in ["salary", "pay", "grade", "scale"]):
            enhanced_query = f"{query} salary pay grade scale compensation"
        
        logger.info(f"πŸ” Enhanced query: '{enhanced_query}' (original: '{query}')")
        
        # Temporarily disable Rajasthan documents table due to vector dimension mismatch
        # if any(keyword in query_lower for keyword in ["rajasthan", "pension", "circular", "pay", "rules"]):
        #     # Use separate table for Rajasthan documents
        #     return await search_rajasthan_documents_async(query, limit)
        all_docs = []
        for kb in knowledge_bases:
            try:
                logger.info(f"πŸ” Searching in knowledge base: {kb} for query: '{enhanced_query}'")
                docs = await lancedb_service.similarity_search(enhanced_query, "system", kb, k=limit*2)  # Get more docs for filtering
                if docs:
                    logger.info(f"βœ… Found {len(docs)} documents in {kb}")
                    all_docs.extend(docs)
                else:
                    logger.warning(f"⚠️ No documents found in knowledge base {kb}")
            except Exception as e:
                logger.error(f"❌ Search failed for knowledge base {kb}: {e}")
                continue
        
        if not all_docs:
            logger.warning(f"πŸ“š No documents found in database for query: '{query}', using fallback content")
            return get_fallback_content(query)
        
        # SIMPLIFIED: Trust the semantic search results - minimal filtering
        filtered_docs = []
        for doc in all_docs:
            # Handle different document object types
            if hasattr(doc, 'page_content'):
                content = doc.page_content.lower()
                metadata = getattr(doc, 'metadata', {})
            else:
                content = str(doc).lower()
                metadata = {}
            
            # Start with base relevance score from LanceDB
            relevance_score = getattr(doc, 'score', 0.7)  # Higher base score
            
            # Simple keyword matching boost for government documents
            government_keywords = ['pension', 'retirement', 'government', 'rules', 'policy', 'allowance', 'benefits', 'service']
            query_keywords = query_lower.split()
            
            # Boost score for keyword matches
            for keyword in query_keywords:
                if keyword in content:
                    relevance_score += 0.2  # Small boost per matching keyword
            
            # Extra boost for exact government keyword matches
            for gov_keyword in government_keywords:
                if gov_keyword in query_lower and gov_keyword in content:
                    relevance_score += 0.3
            
            # VERY PERMISSIVE THRESHOLD - trust the semantic search
            threshold = -0.5  # Accept almost all documents returned by semantic search
            
            if relevance_score > threshold:
                logger.info(f"βœ… Document PASSED filter: score {relevance_score:.2f} > threshold {threshold}")
                # Add relevance score to document
                if hasattr(doc, 'metadata'):
                    doc.metadata['relevance_score'] = relevance_score
                filtered_docs.append(doc)
            else:
                logger.info(f"❌ Document FAILED filter: score {relevance_score:.2f} <= threshold {threshold}")
        
        # Remove duplicates based on content similarity first
        unique_docs = []
        seen_content = set()
        
        for doc in filtered_docs:
            content_hash = hash(doc.page_content[:200])  # Use first 200 chars as content signature
            if content_hash not in seen_content:
                seen_content.add(content_hash)
                unique_docs.append(doc)
        
        # Sort by relevance score and limit results
        unique_docs = sorted(unique_docs, key=lambda x: getattr(x, 'metadata', {}).get('relevance_score', 0), reverse=True)[:limit]
        
        if not unique_docs:
            logger.warning(f"πŸ“š No relevant documents found after filtering for query: '{query}', using fallback content")
            return get_fallback_content(query)
        
        logger.info(f"πŸ“Š Filtered to {len(unique_docs)} unique documents from {len(all_docs)} total (removed {len(filtered_docs) - len(unique_docs)} duplicates)")
        
        results = []
        for doc in unique_docs:
            metadata = doc.metadata if hasattr(doc, 'metadata') else {}
            clause_text = doc.page_content
            # Simple extractive summary: first sentence or up to 2 lines
            summary = clause_text.split(". ")[0][:180] + ("..." if len(clause_text) > 180 else "")
            # Enhanced role-aware checklist logic
            role_checklist = generate_role_based_checklist(query, clause_text)
            results.append({
                "clause_text": clause_text,
                "summary": summary,
                "role_checklist": role_checklist,
                "source_title": metadata.get('title', metadata.get('source', 'Unknown')),
                "clause_id": metadata.get('clause_id', ''),
                "date": metadata.get('date', ''),
                "url": metadata.get('url', ''),
                "score": getattr(doc, 'score', 1.0)
            })
        logger.info(f"πŸ“š Found {len(results)} documents for query: {query}")
        return results
    except Exception as e:
        logger.error(f"❌ Error in search_documents_async: {e}")
        return get_fallback_content(query)

async def search_rajasthan_documents_async(query: str, limit: int = 5) -> List[Dict[str, Any]]:
    """
    Async search specifically in the Rajasthan documents table using direct LanceDB query.
    """
    try:
        import lancedb
        db = lancedb.connect('./lancedb_data')
        if 'rajasthan_documents' not in db.table_names():
            logger.warning("⚠️  Rajasthan documents table not found")
            return []
        tbl = db.open_table('rajasthan_documents')
        query_embedding = embedding_model.embed_query(query)
        # LanceDB search is sync, so run in thread executor
        import pandas as pd
        import concurrent.futures
        def run_search():
            return tbl.search(query_embedding).limit(limit).to_pandas()
        loop = asyncio.get_running_loop()
        search_results = await loop.run_in_executor(None, run_search)
        if search_results.empty:
            logger.info(f"πŸ“š No results found in Rajasthan documents for: {query}")
            return get_fallback_content(query)
        results = []
        for _, row in search_results.iterrows():
            clause_text = row['content']
            summary = clause_text.split(". ")[0][:180] + ("..." if len(clause_text) > 180 else "")
            role_checklist = []
            query_lower = query.lower()
            if "pension" in query_lower:
                role_checklist = [
                    "Check eligibility (service years, misconduct)",
                    "Collect required documents (service book, ID, proof)",
                    "Obtain approvals (sanctioning authority)",
                    "Submit application to pension office"
                ]
            elif "procurement" in query_lower or "bid" in query_lower:
                role_checklist = [
                    "Review procurement thresholds and MSME relaxations",
                    "Prepare bid documents",
                    "Complete registration and approvals",
                    "Submit bid before deadline"
                ]
            elif "finance" in query_lower:
                role_checklist = [
                    "Check sanctioning steps",
                    "Update registers",
                    "Obtain necessary approvals",
                    "Notify stakeholders"
                ]
            results.append({
                "clause_text": clause_text,
                "summary": summary,
                "role_checklist": role_checklist,
                "source_title": row.get('title', row.get('filename', 'Unknown')),
                "clause_id": row.get('clause_id', ''),
                "date": row.get('date', ''),
                "url": row.get('url', ''),
                "score": float(row.get('_distance', 1.0))
            })
        logger.info(f"πŸ“š Found {len(results)} Rajasthan documents for query: {query}")
        return results
    except Exception as e:
        logger.error(f"❌ Error searching Rajasthan documents: {e}")
        return []

@tool
async def search_docs(query: str, config: RunnableConfig) -> str:
    """Search the knowledge base for relevant context within a specific knowledge base."""
    userid = config["configurable"].get("thread_id")
    knowledge_base = config["configurable"].get("knowledge_base", "government_docs")
    
    try:
        # Search in the specified knowledge base
        import time
        t0 = time.time()
        docs = await lancedb_service.similarity_search(query, userid, knowledge_base)
        t1 = time.time()
        if docs:
            # Advanced extractive summarization using NLTK
            try:
                import nltk
                nltk.download('punkt', quiet=True)
                from nltk.tokenize import sent_tokenize
            except ImportError:
                sent_tokenize = lambda x: x.split('.')
            t2 = time.time()
            # Embedding-based chunk selection
            try:
                from sentence_transformers import SentenceTransformer
                embedder = SentenceTransformer('all-MiniLM-L6-v2')
            except ImportError:
                embedder = None
            t3 = time.time()
            def select_best_chunk(chunks, query):
                if not embedder or not chunks:
                    return chunks[0] if chunks else ""
                chunk_embeddings = embedder.encode(chunks)
                query_embedding = embedder.encode([query])[0]
                import numpy as np
                scores = [np.dot(chunk_emb, query_embedding)/(np.linalg.norm(chunk_emb)*np.linalg.norm(query_embedding)) for chunk_emb in chunk_embeddings]
                best_idx = int(np.argmax(scores))
                return chunks[best_idx]
            def extractive_summary(text, max_sentences=3):
                sentences = sent_tokenize(text)
                keywords = query.lower().split()
                scored = [s for s in sentences if any(k in s.lower() for k in keywords)]
                if scored:
                    return ' '.join(scored[:max_sentences])
                return ' '.join(sentences[:max_sentences])
            t4 = time.time()
            compressed_contexts = []
            for doc in docs:
                if hasattr(doc, 'chunks') and doc.chunks:
                    best_chunk = select_best_chunk(doc.chunks, query)
                    summary = extractive_summary(best_chunk)
                else:
                    paragraphs = doc.page_content.split('\n\n')
                    best_chunk = select_best_chunk(paragraphs, query) if paragraphs else doc.page_content
                    summary = extractive_summary(best_chunk)
                compressed_contexts.append(summary)
            t5 = time.time()
            context = "\n\n".join(compressed_contexts)
            t6 = time.time()
            import logging
            logging.info(f"[Latency] Document search: {t1-t0:.3f}s, NLTK setup: {t2-t1:.3f}s, Embedding setup: {t3-t2:.3f}s, Function setup: {t4-t3:.3f}s, Chunking/summarization: {t5-t4:.3f}s, Context join: {t6-t5:.3f}s, Total: {t6-t0:.3f}s")
            return f"πŸ“„ Found {len(docs)} relevant documents (chunked & summarized):\n\n{context}"
        else:
            context = ""
            t7 = time.time()
            import logging
            logging.info(f"[Latency] Document search: {t1-t0:.3f}s, No docs found, Total: {t7-t0:.3f}s")
            return "No relevant documents found in the knowledge base."
    except Exception as e:
        logger.error(f"❌ Error searching documents: {e}")
        return "Error occurred while searching documents."

@tool
async def search_government_docs(query: str, config: RunnableConfig) -> str:
    """Search government documents for relevant information and policies."""
    try:
        # Search specifically in government_docs knowledge base
        docs = await lancedb_service.similarity_search(query, "system", "government_docs")
        
        if not docs:
            return "No relevant government documents found for your query."
        
        context = "\n\n".join([doc.page_content for doc in docs])
        sources = list(set([doc.metadata.get('source', 'Unknown') for doc in docs]))
        
        result = f"πŸ“‹ Found {len(docs)} relevant government documents:\n\n{context}"
        if sources:
            result += f"\n\nπŸ“ Sources: {', '.join(sources)}"
        
        return result
        
    except Exception as e:
        logger.error(f"❌ Error searching government documents: {e}")
        return "Error occurred while searching government documents."

@tool
async def analyze_scenario(scenario_query: str, config: RunnableConfig) -> str:
    """
    Analyze government scenarios and create visualizations including charts, graphs, and diagrams.
    Use this tool when users ask for scenario analysis, data visualization, charts, graphs, or diagrams
    related to government processes, budgets, policies, organizational structures, or performance metrics.
    
    Args:
        scenario_query: Description of the scenario to analyze (e.g., "budget analysis for health department",
                       "policy implementation timeline", "organizational structure", "performance metrics")
    """
    try:
        logger.info(f"πŸ” Analyzing scenario: {scenario_query}")
        
        # Parse the scenario query to determine type and extract data
        scenario_data = await _parse_scenario_query(scenario_query)
        
        # Perform scenario analysis
        result = await scenario_service.analyze_government_scenario(scenario_data)
        
        if result.get("success", False):
            # Format response with images
            response = f"πŸ“Š **Scenario Analysis Complete!**\n\n"
            response += result.get("analysis", "")
            response += f"\n\nπŸ–ΌοΈ **Generated {len(result.get('images', []))} visualization(s)**"
            
            # Add image information for frontend rendering
            if result.get("images"):
                response += "\n\n**SCENARIO_IMAGES_START**\n"
                response += json.dumps(result["images"])
                response += "\n**SCENARIO_IMAGES_END**"
            
            return response
        else:
            return f"❌ Error in scenario analysis: {result.get('error', 'Unknown error')}"
            
    except Exception as e:
        logger.error(f"❌ Error in scenario analysis tool: {e}")
        return f"Error occurred while analyzing scenario: {str(e)}"

async def _parse_scenario_query(query: str) -> Dict[str, Any]:
    """Parse scenario query to determine type and extract relevant data"""
    query_lower = query.lower()
    
    # Determine scenario type based on keywords
    if any(word in query_lower for word in ["budget", "financial", "expenditure", "allocation", "funding"]):
        scenario_type = "budget"
        # Extract budget data if mentioned in query
        data = _extract_budget_data(query)
    elif any(word in query_lower for word in ["policy", "implementation", "timeline", "plan", "strategy"]):
        scenario_type = "policy"
        data = _extract_policy_data(query)
    elif any(word in query_lower for word in ["organization", "hierarchy", "structure", "reporting", "org"]):
        scenario_type = "organization"
        data = _extract_org_data(query)
    elif any(word in query_lower for word in ["performance", "metrics", "kpi", "efficiency", "evaluation"]):
        scenario_type = "performance"
        data = _extract_performance_data(query)
    elif any(word in query_lower for word in ["workflow", "process", "flow", "procedure", "steps"]):
        scenario_type = "workflow"
        data = _extract_workflow_data(query)
    else:
        scenario_type = "general"
        data = {}
    
    return {
        "type": scenario_type,
        "title": f"Government {scenario_type.title()} Analysis",
        "data": data
    }

def _extract_budget_data(query: str) -> Dict[str, Any]:
    """Extract budget-related data from query"""
    # This could be enhanced with NLP to extract actual numbers and departments
    # For now, return sample data structure
    return {}

def _extract_policy_data(query: str) -> Dict[str, Any]:
    """Extract policy-related data from query"""
    return {}

def _extract_org_data(query: str) -> Dict[str, Any]:
    """Extract organizational data from query"""
    return {}

def _extract_performance_data(query: str) -> Dict[str, Any]:
    """Extract performance data from query"""
    return {}

def _extract_workflow_data(query: str) -> Dict[str, Any]:
    """Extract workflow data from query"""
    return {}

if __name__ == "__main__":
    import asyncio

    async def test_search():
        print("πŸ” Testing search_docs RAG tool with LanceDB vector store...\n")

        test_user_id = "test_user_123"
        test_knowledge_base = "test_kb"

        while True:
            user_input = input("Enter a query (or 'exit'): ").strip()
            if user_input.lower() == "exit":
                break

            kb_input = input(f"Knowledge base (current: {test_knowledge_base}, press Enter to keep): ").strip()
            if kb_input:
                test_knowledge_base = kb_input

            try:
                result = await search_docs.ainvoke(
                    {"query": user_input},
                    config=RunnableConfig(
                        configurable={
                            "thread_id": test_user_id,
                            "knowledge_base": test_knowledge_base
                        }
                    )
                )
                print(f"\nπŸ“„ Results from '{test_knowledge_base}' knowledge base:\n")
                print(result)
                print("\n" + "="*50 + "\n")
            except Exception as e:
                print(f"❌ Error: {e}")

    asyncio.run(test_search())