RAG-Ghaymah-Documentation / embedder /EmbeddingModels.py
Ahmed-El-Sharkawy's picture
Upload Reranker and Embedding Model
7d4ed22 verified
from sentence_transformers import SentenceTransformer
import numpy as np
import requests
class EmbeddingModel:
def __init__(self, model_name: str = "sentence-transformers/all-MiniLM-L12-v2"):
self.model = model_name
def get_embedder(self):
return SentenceTransformer(self.model)
# Remote (insert & search)
def _embed_texts(self, texts: list[str]) -> np.ndarray:
model = self.get_embedder()
embs = model.encode(
texts, batch_size=64, show_progress_bar=False,
convert_to_numpy=True, normalize_embeddings=True
)
# Ensure float32
return embs.astype("float32")
def search_remote(self, query: str, k: int = 5, HOST: str="") -> list[dict]:
"""
Embeds the query and searches the remote vector store.
Returns a list of result dicts. We expect each item to include at least:
- score (float)
- payload (dict) with 'text' and optional metadata
"""
q = self._embed_texts([query])[0].tolist()
try:
resp = requests.post(
f"{HOST}/search",
json={"vector": q, "k": k},
headers={"Content-Type": "application/json"},
timeout=30
)
resp.raise_for_status()
data = resp.json()
# print("Raw remote search response:", data)
# print(f"Row Data: {data}")
# Each result ideally has {'scores': ..., 'payloads': {...}}.
payload = data.get("payloads")
scores = data.get("scores")
dict = {"scores": scores, "payloads": payload}
return dict
except Exception as e:
print(f"Remote search failed: {e}")
return []
def retrieve_top_k_remote_texts(self, query: str, k: int = 5, HOST: str="") -> list[str]:
"""
Uses search_remote() and extracts 'text' from payloads.
"""
results = self.search_remote(query, k=k, HOST=HOST)
# print(f"Remote search returned {len(results)} results.")
# print("res-1:", results)
texts = []
sources = []
# print(results)
for r in results.get("payloads"):
t = r.get("text")
src = r.get("source")
if isinstance(t, str) and len(t.strip()) > 0:
texts.append(t.strip())
if isinstance(src, str) and src:
sources.append(src)
# print(f"Retrieved {len(texts)} remote texts for query.")
# print("Sources:", {len(sources)})
results = []
for i in range(len(sources)):
results.append({"text": texts[i], "source": sources[i]})
# print("Results-2:", results)
return results