Spaces:
Sleeping
Sleeping
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| import gradio as gr | |
| # Load model and tokenizer | |
| model_name = "valhalla/t5-small-qg-hl" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| # Function to generate question | |
| def generate_question(context, answer): | |
| if not context.strip() or not answer.strip(): | |
| return "Please enter both context and answer." | |
| input_text = f"generate question: {context.replace(answer, '<hl> ' + answer + ' <hl>')}" | |
| inputs = tokenizer.encode(input_text, return_tensors="pt") | |
| outputs = model.generate(inputs, max_length=64, num_beams=4, early_stopping=True) | |
| question = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return question | |
| # Gradio interface | |
| iface = gr.Interface( | |
| fn=generate_question, | |
| inputs=[ | |
| gr.Textbox(lines=5, label="Context or Paragraph"), | |
| gr.Textbox(lines=1, label="Answer (highlighted text)") | |
| ], | |
| outputs="text", | |
| title="🧠 AI Question Generator", | |
| description="Enter a paragraph and the answer you want highlighted. The app generates a relevant question." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch(server_name="0.0.0.0", server_port=7860) | |