|
|
import gradio as gr |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("unsloth/qwen2.5-math-1.5b") |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
"unsloth/qwen2.5-math-1.5b", |
|
|
device_map="cpu" |
|
|
) |
|
|
|
|
|
generator = pipeline( |
|
|
"text-generation", |
|
|
model=model, |
|
|
tokenizer=tokenizer, |
|
|
device=-1 |
|
|
) |
|
|
|
|
|
|
|
|
def respond(message, history, system_message, max_tokens, temperature, top_p): |
|
|
full_prompt = f"{system_message}\n" |
|
|
for h in history: |
|
|
full_prompt += f"User: {h['user']}\nBot: {h['bot']}\n" |
|
|
full_prompt += f"User: {message}\nBot:" |
|
|
|
|
|
output = generator( |
|
|
full_prompt, |
|
|
max_new_tokens=max_tokens, |
|
|
do_sample=True, |
|
|
temperature=temperature, |
|
|
top_p=top_p |
|
|
)[0]["generated_text"] |
|
|
|
|
|
|
|
|
bot_response = output[len(full_prompt):].strip() |
|
|
history.append({"user": message, "bot": bot_response}) |
|
|
return history, history |
|
|
|
|
|
|
|
|
chatbot = gr.ChatInterface( |
|
|
respond, |
|
|
type="messages", |
|
|
additional_inputs=[ |
|
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
|
gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max new tokens"), |
|
|
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature"), |
|
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)"), |
|
|
] |
|
|
) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
|
with gr.Sidebar(): |
|
|
gr.LoginButton() |
|
|
chatbot.render() |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|
|
|
|