File size: 16,223 Bytes
440d3c6 a221f71 566c8e3 440d3c6 a221f71 440d3c6 566c8e3 440d3c6 a221f71 566c8e3 3eff5bc 566c8e3 a221f71 440d3c6 a221f71 440d3c6 566c8e3 781872c 566c8e3 781872c 566c8e3 61e4b36 566c8e3 440d3c6 61e4b36 440d3c6 a221f71 440d3c6 61e4b36 440d3c6 a221f71 566c8e3 440d3c6 566c8e3 440d3c6 566c8e3 440d3c6 a221f71 440d3c6 a221f71 440d3c6 a221f71 440d3c6 566c8e3 a221f71 781872c 566c8e3 a221f71 566c8e3 440d3c6 61e4b36 a221f71 566c8e3 a221f71 781872c a221f71 566c8e3 440d3c6 61e4b36 566c8e3 a221f71 440d3c6 566c8e3 3eff5bc 566c8e3 440d3c6 566c8e3 440d3c6 566c8e3 a221f71 440d3c6 a221f71 440d3c6 a221f71 440d3c6 a221f71 566c8e3 781872c a221f71 440d3c6 a221f71 440d3c6 566c8e3 a221f71 566c8e3 a221f71 440d3c6 781872c a221f71 440d3c6 566c8e3 440d3c6 a221f71 566c8e3 a221f71 440d3c6 a221f71 566c8e3 440d3c6 a221f71 440d3c6 566c8e3 a221f71 566c8e3 781872c 566c8e3 781872c 566c8e3 781872c 566c8e3 781872c 566c8e3 781872c 566c8e3 781872c 566c8e3 781872c 440d3c6 566c8e3 440d3c6 566c8e3 440d3c6 566c8e3 440d3c6 3eff5bc 566c8e3 440d3c6 566c8e3 a221f71 566c8e3 a221f71 440d3c6 566c8e3 781872c 3eff5bc a221f71 566c8e3 a221f71 566c8e3 a221f71 566c8e3 a221f71 566c8e3 61e4b36 a221f71 61e4b36 a221f71 566c8e3 440d3c6 61e4b36 566c8e3 440d3c6 566c8e3 440d3c6 a221f71 566c8e3 a221f71 440d3c6 781872c 440d3c6 566c8e3 440d3c6 566c8e3 a221f71 566c8e3 a221f71 61e4b36 440d3c6 a221f71 440d3c6 a221f71 61e4b36 440d3c6 566c8e3 440d3c6 a221f71 566c8e3 a221f71 566c8e3 61e4b36 440d3c6 a221f71 566c8e3 a221f71 440d3c6 566c8e3 a221f71 b760080 a221f71 781872c 440d3c6 a221f71 440d3c6 566c8e3 440d3c6 781872c a221f71 440d3c6 566c8e3 440d3c6 a221f71 440d3c6 566c8e3 440d3c6 a221f71 61e4b36 a221f71 566c8e3 a221f71 566c8e3 a221f71 440d3c6 566c8e3 440d3c6 a221f71 440d3c6 a221f71 566c8e3 a221f71 566c8e3 a221f71 566c8e3 a221f71 566c8e3 a221f71 566c8e3 a221f71 566c8e3 a221f71 566c8e3 a221f71 8486105 566c8e3 8486105 566c8e3 a221f71 566c8e3 a221f71 8486105 a221f71 8486105 566c8e3 8486105 a221f71 566c8e3 a221f71 566c8e3 a221f71 8486105 566c8e3 a221f71 8486105 a221f71 8486105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import json
import textwrap
from typing import Dict, Any, List, Tuple
import gradio as gr
import requests
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
# ============================================================
# LLM CALLER (GPT-4.1 BY DEFAULT)
# ============================================================
def call_chat_completion(
api_key: str,
base_url: str,
model: str,
system_prompt: str,
user_prompt: str,
max_completion_tokens: int = 2000,
) -> str:
"""
OpenAI-compatible chat completion call.
- Uses new-style `max_completion_tokens` (for GPT-4.1, GPT-4o, etc.)
- Falls back to `max_tokens` if the provider doesn't support it.
- No temperature / top_p to avoid incompatibility with some models.
"""
if not api_key:
raise ValueError("API key is required.")
if not base_url:
base_url = "https://api.openai.com"
url = base_url.rstrip("/") + "/v1/chat/completions"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
payload = {
"model": model,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
"max_completion_tokens": max_completion_tokens,
}
resp = requests.post(url, headers=headers, json=payload, timeout=60)
# Fallback for providers still expecting `max_tokens`
if resp.status_code == 400 and "max_completion_tokens" in resp.text:
payload.pop("max_completion_tokens", None)
payload["max_tokens"] = max_completion_tokens
resp = requests.post(url, headers=headers, json=payload, timeout=60)
if resp.status_code != 200:
raise RuntimeError(
f"LLM API error: {resp.status_code} - {resp.text[:400]}"
)
data = resp.json()
try:
return data["choices"][0]["message"]["content"]
except Exception as e:
raise RuntimeError(f"Unexpected LLM response format: {e}\n\n{json.dumps(data, indent=2)}") from e
# ============================================================
# SOP PROMPT + PARSING
# ============================================================
SOP_SYSTEM_PROMPT = """
You are an expert process engineer. Produce SOPs strictly as JSON with this schema:
{
"title": "string",
"purpose": "string",
"scope": "string",
"definitions": ["string", ...],
"roles": [
{
"name": "string",
"responsibilities": ["string", ...]
}
],
"prerequisites": ["string", ...],
"steps": [
{
"step_number": 1,
"title": "string",
"description": "string",
"owner_role": "string",
"inputs": ["string", ...],
"outputs": ["string", ...]
}
],
"escalation": ["string", ...],
"metrics": ["string", ...],
"risks": ["string", ...],
"versioning": {
"version": "1.0",
"owner": "string",
"last_updated": "string"
}
}
Return ONLY JSON. No explanation or commentary.
"""
def build_user_prompt(
sop_title: str,
description: str,
industry: str,
tone: str,
detail_level: str,
) -> str:
return f"""
SOP Title: {sop_title or "Untitled SOP"}
Context: {description or "N/A"}
Industry: {industry or "General"}
Tone: {tone or "Professional"}
Detail Level: {detail_level or "Standard"}
Audience: mid-career professionals who need clarity and accountability.
""".strip()
def parse_sop_json(raw_text: str) -> Dict[str, Any]:
"""Extract JSON from LLM output, stripping code fences if present."""
txt = raw_text.strip()
if txt.startswith("```"):
parts = txt.split("```")
# choose the first part that looks like JSON
txt = next((p for p in parts if "{" in p and "}" in p), parts[-1])
first = txt.find("{")
last = txt.rfind("}")
if first == -1 or last == -1:
raise ValueError("No JSON object detected in model output.")
txt = txt[first:last + 1]
return json.loads(txt)
def sop_to_markdown(sop: Dict[str, Any]) -> str:
"""Render SOP JSON β readable Markdown document."""
def bullet(items):
if not items:
return "_None provided._"
return "\n".join(f"- {i}" for i in items)
md = []
md.append(f"# {sop.get('title', 'Standard Operating Procedure')}\n")
md.append("## 1. Purpose")
md.append(sop.get("purpose", "N/A"))
md.append("\n## 2. Scope")
md.append(sop.get("scope", "N/A"))
md.append("\n## 3. Definitions")
md.append(bullet(sop.get("definitions", [])))
md.append("\n## 4. Roles & Responsibilities")
for role in sop.get("roles", []):
md.append(f"### {role.get('name', 'Role')}")
md.append(bullet(role.get("responsibilities", [])))
md.append("\n## 5. Prerequisites")
md.append(bullet(sop.get("prerequisites", [])))
md.append("\n## 6. Procedure (Step-by-Step)")
for step in sop.get("steps", []):
md.append(f"### Step {step.get('step_number', '?')}: {step.get('title', 'Step')}")
md.append(f"**Owner:** {step.get('owner_role', 'N/A')}")
md.append(step.get("description", ""))
md.append("**Inputs:**")
md.append(bullet(step.get("inputs", [])))
md.append("**Outputs:**")
md.append(bullet(step.get("outputs", [])))
md.append("\n## 7. Escalation")
md.append(bullet(sop.get("escalation", [])))
md.append("\n## 8. Metrics")
md.append(bullet(sop.get("metrics", [])))
md.append("\n## 9. Risks")
md.append(bullet(sop.get("risks", [])))
v = sop.get("versioning", {})
md.append("\n## 10. Version Control")
md.append(f"- Version: {v.get('version', '1.0')}")
md.append(f"- Owner: {v.get('owner', 'N/A')}")
md.append(f"- Last Updated: {v.get('last_updated', 'N/A')}")
return "\n\n".join(md)
# ============================================================
# IMPROVED DIAGRAM β AUTO-SIZED CARDS, NO OVERFLOW
# ============================================================
def create_sop_steps_figure(sop: Dict[str, Any]) -> Figure:
"""
Draw each step as a stacked card with:
- dynamic height based on description length
- number block on the left
- title + owner + wrapped description inside card
"""
steps = sop.get("steps", [])
if not steps:
fig, ax = plt.subplots(figsize=(7, 2))
ax.text(0.5, 0.5, "No steps available to visualize.", ha="center", va="center")
ax.axis("off")
fig.tight_layout()
return fig
# First pass: determine required height for each card
card_heights = []
total_height = 0.0
for step in steps:
desc_lines = textwrap.wrap(step.get("description", ""), width=70)
# base height (title + owner) + 0.3 per line of description
base = 1.0 # title + owner + padding
per_line = 0.32
h = base + per_line * max(len(desc_lines), 1)
h += 0.3 # bottom padding
card_heights.append(h)
total_height += h
# Add spacing between cards
spacing = 0.4
total_height += spacing * (len(steps) + 1)
fig_height = min(20, max(5, total_height))
fig, ax = plt.subplots(figsize=(10, fig_height))
ax.set_xlim(0, 1)
ax.set_ylim(0, total_height)
y = total_height - spacing # start from top
for step, h in zip(steps, card_heights):
y_bottom = y - h
y_top = y
# Card boundaries
x0 = 0.05
x1 = 0.95
# Draw outer card
ax.add_patch(
plt.Rectangle(
(x0, y_bottom),
x1 - x0,
h,
fill=False,
linewidth=1.8,
)
)
# Number block
num_block_w = 0.08
ax.add_patch(
plt.Rectangle(
(x0, y_bottom),
num_block_w,
h,
fill=False,
linewidth=1.6,
)
)
# Step number text in the center of the number block
ax.text(
x0 + num_block_w / 2,
y_bottom + h / 2,
str(step.get("step_number", "?")),
ha="center",
va="center",
fontsize=13,
fontweight="bold",
)
# Text area start
text_x = x0 + num_block_w + 0.02
# Title
ax.text(
text_x,
y_top - 0.25,
step.get("title", ""),
ha="left",
va="top",
fontsize=12,
fontweight="bold",
)
# Owner
owner = step.get("owner_role", "")
if owner:
owner_y = y_top - 0.55
ax.text(
text_x,
owner_y,
f"Owner: {owner}",
ha="left",
va="top",
fontsize=10,
style="italic",
)
else:
owner_y = y_top - 0.5
# Description (wrapped)
desc_lines = textwrap.wrap(step.get("description", ""), width=70)
desc_y = owner_y - 0.4
for line in desc_lines:
ax.text(
text_x,
desc_y,
line,
ha="left",
va="top",
fontsize=9,
)
desc_y -= 0.3 # vertical spacing per line
y = y_bottom - spacing # move down for next card
ax.axis("off")
fig.tight_layout()
return fig
# ============================================================
# SAMPLE SCENARIOS
# ============================================================
SAMPLE_SOPS: Dict[str, Dict[str, str]] = {
"Volunteer Onboarding": {
"title": "Volunteer Onboarding",
"description": "Onboard new volunteers including application review, background checks, orientation, training, and site placement.",
"industry": "Nonprofit / Youth Development",
},
"Remote Employee Onboarding": {
"title": "Remote Employee Onboarding",
"description": "Design a remote onboarding SOP for hybrid employees including IT setup, HR paperwork, and culture onboarding.",
"industry": "HR / General",
},
"IT Outage Response": {
"title": "IT Outage Incident Response",
"description": "Major outage response SOP including detection, triage, escalation, communication, restoration, and post-mortem.",
"industry": "IT / Operations",
},
}
def load_sample(sample_name: str) -> Tuple[str, str, str]:
if not sample_name or sample_name not in SAMPLE_SOPS:
return "", "", "General"
s = SAMPLE_SOPS[sample_name]
return s["title"], s["description"], s["industry"]
# ============================================================
# MAIN HANDLER FOR GRADIO
# ============================================================
def generate_sop_ui(
api_key_state: str,
api_key_input: str,
base_url: str,
model_name: str,
sop_title: str,
description: str,
industry: str,
tone: str,
detail_level: str,
) -> Tuple[str, str, Figure, str]:
api_key = api_key_input or api_key_state
if not api_key:
return (
"β οΈ Please enter your API key in the left panel.",
"",
create_sop_steps_figure({"steps": []}),
api_key_state,
)
model = model_name or "gpt-4.1"
user_prompt = build_user_prompt(sop_title, description, industry, tone, detail_level)
try:
raw = call_chat_completion(
api_key=api_key,
base_url=base_url,
model=model,
system_prompt=SOP_SYSTEM_PROMPT,
user_prompt=user_prompt,
max_completion_tokens=2000,
)
sop = parse_sop_json(raw)
md = sop_to_markdown(sop)
fig = create_sop_steps_figure(sop)
json_out = json.dumps(sop, indent=2, ensure_ascii=False)
return md, json_out, fig, api_key # persist key in session state
except Exception as e:
return (
f"β Error generating SOP:\n\n{e}",
"",
create_sop_steps_figure({"steps": []}),
api_key_state,
)
# ============================================================
# GRADIO UI
# ============================================================
with gr.Blocks(title="ZEN Simple SOP Builder") as demo:
gr.Markdown(
"""
# π§ ZEN Simple SOP Builder
Generate clean, professional Standard Operating Procedures (SOPs) from a short description,
plus an auto-generated visual diagram of the steps.
Powered by your own API key (GPT-4.1 by default).
"""
)
api_key_state = gr.State("")
with gr.Row():
# LEFT COLUMN β API + Samples
with gr.Column(scale=1):
gr.Markdown("### Step 1 β API & Model Settings")
api_key_input = gr.Textbox(
label="LLM API Key",
placeholder="Enter your OpenAI (or compatible) API key",
type="password",
)
base_url = gr.Textbox(
label="Base URL",
value="https://api.openai.com",
placeholder="e.g. https://api.openai.com or custom OpenAI-compatible endpoint",
)
model_name = gr.Textbox(
label="Model Name",
value="gpt-4.1",
placeholder="e.g. gpt-4.1, gpt-4o, etc.",
)
gr.Markdown("### Load a Sample SOP")
sample_dropdown = gr.Dropdown(
label="Sample scenarios",
choices=list(SAMPLE_SOPS.keys()),
value=None,
info="Optional: load a ready-made example to test the tool.",
)
load_button = gr.Button("Load Sample into Form")
# RIGHT COLUMN β SOP Description
with gr.Column(scale=2):
gr.Markdown("### Step 2 β Describe the SOP")
sop_title = gr.Textbox(
label="SOP Title",
placeholder="e.g. Volunteer Onboarding Workflow",
)
description = gr.Textbox(
label="Describe the process / context",
placeholder="What should this SOP cover? Who is it for? Any constraints?",
lines=6,
)
industry = gr.Textbox(
label="Industry / Domain",
value="General",
placeholder="e.g. Nonprofit, HR, Education, Healthcare, IT",
)
tone = gr.Dropdown(
label="Tone",
choices=["Professional", "Executive", "Supportive", "Direct", "Compliance-focused"],
value="Professional",
)
detail_level = gr.Dropdown(
label="Detail Level",
choices=["Standard", "High detail", "Checklist-style", "Overview only"],
value="Standard",
)
generate_button = gr.Button("π Generate SOP", variant="primary")
gr.Markdown("### Step 3 β Generated SOP")
with gr.Row():
with gr.Column(scale=3):
sop_output = gr.Markdown(
label="SOP (Markdown)",
value="Your SOP will appear here after generation.",
)
with gr.Column(scale=2):
sop_json_output = gr.Code(
label="Raw SOP JSON (for automation / export)",
language="json",
)
gr.Markdown("### Step 4 β Visual Workflow Diagram")
sop_figure = gr.Plot(label="SOP Steps Diagram")
# Wire up actions
load_button.click(
fn=load_sample,
inputs=[sample_dropdown],
outputs=[sop_title, description, industry],
)
generate_button.click(
fn=generate_sop_ui,
inputs=[
api_key_state,
api_key_input,
base_url,
model_name,
sop_title,
description,
industry,
tone,
detail_level,
],
outputs=[sop_output, sop_json_output, sop_figure, api_key_state],
)
if __name__ == "__main__":
demo.launch()
|