Spaces:
Runtime error
Runtime error
File size: 16,062 Bytes
1a5a832 af7014e 1a5a832 4f93f43 3698240 d61dc23 9996b89 afcc6ac 3698240 afcc6ac af7014e d8e142e eaf3553 afcc6ac d8e142e 4f93f43 afcc6ac 3698240 3cbbfb9 3698240 afcc6ac 872279f afcc6ac 3698240 c63db98 d8e142e c86a2d5 37d1dcb c86a2d5 37d1dcb 87e24e1 c86a2d5 d8e142e 3698240 d8e142e c63db98 d8e142e 1a5a832 c86a2d5 d8e142e 872279f d8e142e 3698240 c63db98 99beedf 1a5a832 99beedf 1a5a832 c63db98 1a5a832 c63db98 6ae9204 99beedf c63db98 9d40e2a 1a5a832 d1c0fdc c63db98 1a5a832 af7014e 1a5a832 af7014e 1a5a832 af7014e 1a5a832 af7014e 1a5a832 af7014e 1a5a832 3953183 1a5a832 af7014e 1a5a832 af7014e 3953183 af7014e 1a5a832 29350b7 9996b89 62a8602 1a5a832 af7014e 1a5a832 af7014e 9996b89 af7014e 3953183 af7014e d1c0fdc af7014e 9996b89 af7014e 4395834 af7014e 29350b7 1a5a832 99beedf 1a5a832 af7014e 3953183 b2773c1 29350b7 7a247ef 29350b7 3953183 4395834 4f93f43 d8e142e 7a247ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import base64
import pathlib
import re
import time
from io import BytesIO
import gradio as gr
import numpy as np
import torch
from PIL import Image, ImageChops, ImageDraw
from fastai.callback.core import Callback
from fastai.learner import *
from fastai.torch_core import TitledStr
from html2image import Html2Image
# from min_dalle import MinDalle
from torch import tensor, Tensor, float16, float32
from torch.distributions import Transform
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
# These utility functions need to be in main (or otherwise where created) because fastai loads from that module, see:
# https://docs.fast.ai/learner.html#load_learner
from transformers import GPT2TokenizerFast
import os
AUTH_TOKEN = os.environ.get('AUTH_TOKEN')
# update requirements.txt with:
# C:\Users\Grant\PycharmProjects\test_space\venv\Scripts\pip3.exe freeze > requirements.txt
# Huggingface Spaces have 16GB RAM and 8 CPU cores
# See https://huggingface.co/docs/hub/spaces-overview#hardware-resources
pretrained_weights = 'gpt2'
tokenizer = GPT2TokenizerFast.from_pretrained(pretrained_weights)
def tokenize(text):
toks = tokenizer.tokenize(text)
return tensor(tokenizer.convert_tokens_to_ids(toks))
class TransformersTokenizer(Transform):
def __init__(self, tokenizer): self.tokenizer = tokenizer
def encodes(self, x):
return x if isinstance(x, Tensor) else tokenize(x)
def decodes(self, x): return TitledStr(self.tokenizer.decode(x.cpu().numpy()))
class DropOutput(Callback):
def after_pred(self): self.learn.pred = self.pred[0]
# initialize only once
# Takes about 2 minutes (126 seconds) to generate an image in Huggingface spaces on CPU
# NOTE as of 2022-11-13 min-dalle is broken, switch to using a stable diffusion model for images
# model = MinDalle(
# models_root='./pretrained',
# dtype=float32,
# device='cpu',
# is_mega=True,
# is_reusable=True
# )
# Download pipeline, but overwrite scheduler
# Consider DPMSolverMultistepScheduler once added to diffusers
from diffusers import EulerAncestralDiscreteScheduler
scheduler = EulerAncestralDiscreteScheduler.from_config("runwayml/stable-diffusion-v1-5", subfolder="scheduler",
use_auth_token=AUTH_TOKEN)
pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_mega",
torch_dtype=torch.float32,
scheduler=scheduler, use_auth_token=AUTH_TOKEN)
# pipe.enable_attention_slicing()
# pipeline.to("cuda")
def gen_image(prompt):
prompt = f"{prompt}, fantasy painting by Greg Rutkowski"
# See https://huggingface.co/spaces/pootow/min-dalle/blob/main/app.py
# Hugging Space faces seems to run out of memory if grads are not disabled
# torch.set_grad_enabled(False)
print(f'RUNNING gen_image with prompt: {prompt}')
images = pipeline.text2img(prompt, width=256, height=256, num_inference_steps=20).images
# images = model.generate_images(
# text=prompt,
# seed=-1,
# grid_size=1, # grid size above 2 causes out of memory on 12 GB 3080Ti; grid size 2 gives 4 images
# is_seamless=False,
# temperature=1,
# top_k=256,
# supercondition_factor=16,
# is_verbose=True
# )
print('COMPLETED GENERATION')
# images = images.to('cpu').numpy()
# images = images.astype(np.uint8)
# return Image.fromarray(images[0])
return images[0]
gpu = False
# init only once
learner = load_learner('export.pkl',
cpu=not gpu) # cpu=False uses GPU; make sure installed torch is GPU e.g. `pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116`
def parse_monster_description(name, text):
match = re.search(r"Description: (.*)", text)
if not match:
return f"{name} is a monster."
description = match.group(1)
print(description.split('.')[0])
return description.split('.')[0]
def gen_monster_text(name):
prompt = f"Name: {name}\r\n"
print(f'GENERATING MONSTER TEXT with prompt: {prompt}')
prompt_ids = tokenizer.encode(prompt)
if gpu:
inp = tensor(prompt_ids)[None].cuda() # Use .cuda() for torch GPU
else:
inp = tensor(prompt_ids)[None]
preds = learner.model.generate(inp, max_length=512, num_beams=5, temperature=1.5, do_sample=True,
repetition_penalty=1.2)
result = tokenizer.decode(preds[0].cpu().numpy())
result = result.split('###')[0].replace(r'\r\n', '\n').replace('\r', '').replace(r'\r', '')
print(f'GENERATING MONSTER COMPLETE')
print(result)
return result
def extract_text_for_header(text, header):
match = re.search(fr"{header}: (.*)", text)
if match is None:
return ''
return match.group(1)
def remove_section(html, html_class):
match = re.search(f'<li class="{html_class}"([\w\W])*?li>', html)
if match is not None:
html = html.replace(match.group(0), '')
return html
def format_monster_card(monster_text, image_data):
print('FORMATTING MONSTER TEXT')
# see giffyglyph's monster maker https://giffyglyph.com/monstermaker/app/
# Different Formatting style examples and some json export formats
card = pathlib.Path('monsterMakerTemplate.html').read_text()
if not isinstance(image_data, (bytes, bytearray)):
card = card.replace('{image_data}', f'{image_data}')
else:
card = card.replace('{image_data}', f'data:image/png;base64,{image_data.decode("utf-8")}')
name = extract_text_for_header(monster_text, 'Name')
card = card.replace('{name}', name)
monster_type = extract_text_for_header(monster_text, 'Type')
card = card.replace('{monster_type}', monster_type)
armor_class = extract_text_for_header(monster_text, 'Armor Class')
card = card.replace('{armor_class}', armor_class)
hit_points = extract_text_for_header(monster_text, 'Hit Points')
card = card.replace('{hit_points}', hit_points)
speed = extract_text_for_header(monster_text, 'Speed')
card = card.replace('{speed}', speed)
str_stat = extract_text_for_header(monster_text, 'STR')
card = card.replace('{str_stat}', str_stat)
dex_stat = extract_text_for_header(monster_text, 'DEX')
card = card.replace('{dex_stat}', dex_stat)
con_stat = extract_text_for_header(monster_text, 'CON')
card = card.replace('{con_stat}', con_stat)
int_stat = extract_text_for_header(monster_text, 'INT')
card = card.replace('{int_stat}', int_stat)
wis_stat = extract_text_for_header(monster_text, 'WIS')
card = card.replace('{wis_stat}', wis_stat)
cha_stat = extract_text_for_header(monster_text, 'CHA')
card = card.replace('{cha_stat}', cha_stat)
saving_throws = extract_text_for_header(monster_text, 'Saving Throws')
card = card.replace('{saving_throws}', saving_throws)
if not saving_throws:
card = remove_section(card, 'monster-saves')
skills = extract_text_for_header(monster_text, 'Skills')
card = card.replace('{skills}', skills)
if not skills:
card = remove_section(card, 'monster-skills')
damage_vulnerabilities = extract_text_for_header(monster_text, 'Damage Vulnerabilities')
card = card.replace('{damage_vulnerabilities}', damage_vulnerabilities)
if not damage_vulnerabilities:
card = remove_section(card, 'monster-vulnerabilities')
damage_resistances = extract_text_for_header(monster_text, 'Damage Resistances')
card = card.replace('{damage_resistances}', damage_resistances)
if not damage_resistances:
card = remove_section(card, 'monster-resistances')
damage_immunities = extract_text_for_header(monster_text, 'Damage Immunities')
card = card.replace('{damage_immunities}', damage_immunities)
if not damage_immunities:
card = remove_section(card, 'monster-immunities')
condition_immunities = extract_text_for_header(monster_text, 'Condition Immunities')
card = card.replace('{condition_immunities}', condition_immunities)
if not condition_immunities:
card = remove_section(card, 'monster-conditions')
senses = extract_text_for_header(monster_text, 'Senses')
card = card.replace('{senses}', senses)
if not senses:
card = remove_section(card, 'monster-senses')
languages = extract_text_for_header(monster_text, 'Languages')
card = card.replace('{languages}', languages)
if not languages:
card = remove_section(card, 'monster-languages')
challenge = extract_text_for_header(monster_text, 'Challenge')
card = card.replace('{challenge}', challenge)
if not challenge:
card = remove_section(card, 'monster-challenge')
description = extract_text_for_header(monster_text, 'Description')
card = card.replace('{description}', description)
match = re.search(r"Passives:\n([\w\W]*)", monster_text)
if match is None:
passives = ''
else:
passives = match.group(1)
p = passives.split(':')
if len(p) > 1:
p = ":".join(p)
p = p.split('\n')
passives_data = ''
for x in p:
x = x.split(':')
if len(x) > 1:
trait = x[0]
if trait == "Passives":
continue
if 'Action' in trait:
break
detail = ":".join(x[1:])
passives_data += f'<div class="monster-trait"><p><span class="name">{trait}</span> <span class="detail">{detail}</span></p></div>'
card = card.replace('{passives}', passives_data)
else:
card = card.replace('{passives}', f'<div class="monster-trait"><p>{passives}</p></div>')
match = re.search(r"Actions:\n([\w\W]*)", monster_text)
if match is None:
actions = ''
else:
actions = match.group(1)
a = actions.split(':')
if len(a) > 1:
a = ":".join(a)
a = a.split('\n')
actions_data = ''
for x in a:
x = x.split(':')
if len(x) > 1:
action = x[0]
if action == "Actions":
continue
if 'Passive' in action:
break
detail = ":".join(x[1:])
actions_data += f'<div class="monster-action"><p><span class="name">{action}</span> <span class="detail">{detail}</span></p></div>'
card = card.replace('{actions}', actions_data)
else:
card = card.replace('{actions}', f'<div class="monster-action"><p>{actions}</p></div>')
# TODO: Legendary actions, reactions, make column count for format an option (1 or 2 column layout)
card = card.replace('Melee or Ranged Weapon Attack:', '<i>Melee or Ranged Weapon Attack:</i>')
card = card.replace('Melee Weapon Attack:', '<i>Melee Weapon Attack:</i>')
card = card.replace('Ranged Weapon Attack:', '<i>Ranged Weapon Attack:</i>')
card = card.replace('Hit:', '<i>Hit:</i>')
print('FORMATTING MONSTER TEXT COMPLETE')
return card
def pil_to_base64(image):
print('CONVERTING PIL IMAGE TO BASE64 STRING')
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue())
print('CONVERTING PIL IMAGE TO BASE64 STRING COMPLETE')
return img_str
hti = Html2Image(output_path='rendered_cards')
def trim(im, border):
bg = Image.new(im.mode, im.size, border)
diff = ImageChops.difference(im, bg)
bbox = diff.getbbox()
if bbox:
return im.crop(bbox)
def crop_background(image):
white = (255, 255, 255)
ImageDraw.floodfill(image, (image.size[0] - 1, 0), white, thresh=50)
image = trim(image, white)
return image
def html_to_png(html):
print('CONVERTING HTML CARD TO PNG IMAGE')
paths = hti.screenshot(html_str=html, css_file="monstermaker.css", save_as="test.png", size=(800, 1440))
path = paths[0]
print('OPENING IMAGE FROM FILE')
img = Image.open(path).convert("RGB")
print('CROPPING BACKGROUND')
img = crop_background(img)
print('CONVERTING HTML CARD TO PNG IMAGE COMPLETE')
return img
def run(name: str) -> (Image, str, Image, str):
start = time.time()
print(f'BEGINNING RUN FOR {name}')
if not name:
placeholder_image = Image.new(mode="RGB", size=(256, 256))
return placeholder_image, 'No name provided; enter a name and try again', placeholder_image, ''
text = gen_monster_text(name)
description = parse_monster_description(name, text)
pil = gen_image(description)
image_data = pil_to_base64(pil)
card_html = format_monster_card(text, image_data)
card_image = html_to_png(card_html)
end = time.time()
print(f'RUN COMPLETED IN {int(end - start)} seconds')
return card_image, text, pil, card_html
app_description = (
"""
# Create your own D&D monster!
Enter a name, click Submit, and wait for about 4 minutes to see the result.
""").strip()
input_box = gr.Textbox(label="Enter a monster name", placeholder="Jabberwock")
output_monster_card = gr.Image(label="Monster Card", type='pil', value="examples/jabberwock_card.png")
output_text_box = gr.Textbox(label="Monster Text", value=pathlib.Path("examples/jabberwock.txt").read_text('utf-8'))
output_monster_image = gr.Image(label="Monster Image", type='pil', value="examples/jabberwock.png")
output_monster_html = gr.HTML(label="Monster HTML", visible=False, show_label=False)
x = gr.components.Textbox()
iface = gr.Interface(title="MonsterGen", theme="default", description=app_description, fn=run, inputs=[input_box],
outputs=[output_monster_card, output_text_box, output_monster_image, output_monster_html])
iface.launch()
# TODO: Add examples, larger language model?, document process, log silences, "Passives" => "Traits", log timestamps
# Fine tune dalle-mini? https://blog.paperspace.com/dalle-mini/
# API works, assuming query takes no longer than 30 seconds (504 gateway timeout)
# Looks like API page improvements are in progress: https://github.com/gradio-app/gradio/issues/1325
# Example code below:
# import requests
# r = requests.post(url='https://hf.space/embed/gstaff/test_space/+/api/predict', json={"data": [""]},
# timeout=None)
# print(r.json())
# Looks like Huggingface uses the queue push api, then polls for status:
# fetch("https://hf.space/embed/gstaff/test_space/api/queue/push/", {
# "headers": {
# "accept": "*/*",
# "accept-language": "en-US,en;q=0.9",
# "content-type": "application/json",
# "sec-ch-ua": "\".Not/A)Brand\";v=\"99\", \"Google Chrome\";v=\"103\", \"Chromium\";v=\"103\"",
# "sec-ch-ua-mobile": "?0",
# "sec-ch-ua-platform": "\"Windows\"",
# "sec-fetch-dest": "empty",
# "sec-fetch-mode": "cors",
# "sec-fetch-site": "same-origin"
# },
# "referrer": "https://hf.space/embed/gstaff/test_space/+?__theme=light",
# "referrerPolicy": "strict-origin-when-cross-origin",
# "body": "{\"fn_index\":0,\"data\":[\"Jabberwock\"],\"action\":\"predict\",\"session_hash\":\"v9ehgfho3p\"}",
# "method": "POST",
# "mode": "cors",
# "credentials": "omit"
# });
# fetch("https://hf.space/embed/gstaff/test_space/api/queue/status/", {
# "headers": {
# "accept": "*/*",
# "accept-language": "en-US,en;q=0.9",
# "content-type": "application/json",
# "sec-ch-ua": "\".Not/A)Brand\";v=\"99\", \"Google Chrome\";v=\"103\", \"Chromium\";v=\"103\"",
# "sec-ch-ua-mobile": "?0",
# "sec-ch-ua-platform": "\"Windows\"",
# "sec-fetch-dest": "empty",
# "sec-fetch-mode": "cors",
# "sec-fetch-site": "same-origin"
# },
# "referrer": "https://hf.space/embed/gstaff/test_space/+?__theme=light",
# "referrerPolicy": "strict-origin-when-cross-origin",
# "body": "{\"hash\":\"09f5369a7a414169aa48948bad5fd93d\"}",
# "method": "POST",
# "mode": "cors",
# "credentials": "omit"
# }); |