File size: 7,800 Bytes
fb36382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.nn as nn
import torch.nn.functional as F
from lib.pvtv2 import pvt_v2_b2
import os
import torch
import torch.nn as nn
import torch.nn.functional as F


class BasicConv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
        super(BasicConv2d, self).__init__()

        self.conv = nn.Conv2d(in_planes, out_planes,
                              kernel_size=kernel_size, stride=stride,
                              padding=padding, dilation=dilation, bias=False)
        self.bn = nn.BatchNorm2d(out_planes)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class CFM(nn.Module):
    def __init__(self, channel):
        super(CFM, self).__init__()
        self.relu = nn.ReLU(True)

        self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
        self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1)
        self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1)
        self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1)
        self.conv_upsample4 = BasicConv2d(channel, channel, 3, padding=1)
        self.conv_upsample5 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)

        self.conv_concat2 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)
        self.conv_concat3 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1)
        self.conv4 = BasicConv2d(3 * channel, channel, 3, padding=1)

    def forward(self, x1, x2, x3):
        x1_1 = x1
        x2_1 = self.conv_upsample1(self.upsample(x1)) * x2
        x3_1 = self.conv_upsample2(self.upsample(self.upsample(x1))) \
               * self.conv_upsample3(self.upsample(x2)) * x3

        x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1)
        x2_2 = self.conv_concat2(x2_2)

        x3_2 = torch.cat((x3_1, self.conv_upsample5(self.upsample(x2_2))), 1)
        x3_2 = self.conv_concat3(x3_2)

        x1 = self.conv4(x3_2)

        return x1




class GCN(nn.Module):
    def __init__(self, num_state, num_node, bias=False):
        super(GCN, self).__init__()
        self.conv1 = nn.Conv1d(num_node, num_node, kernel_size=1)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv1d(num_state, num_state, kernel_size=1, bias=bias)

    def forward(self, x):
        h = self.conv1(x.permute(0, 2, 1)).permute(0, 2, 1)
        h = h - x
        h = self.relu(self.conv2(h))
        return h


class SAM(nn.Module):
    def __init__(self, num_in=32, plane_mid=16, mids=4, normalize=False):
        super(SAM, self).__init__()

        self.normalize = normalize
        self.num_s = int(plane_mid)
        self.num_n = (mids) * (mids)
        self.priors = nn.AdaptiveAvgPool2d(output_size=(mids + 2, mids + 2))

        self.conv_state = nn.Conv2d(num_in, self.num_s, kernel_size=1)
        self.conv_proj = nn.Conv2d(num_in, self.num_s, kernel_size=1)
        self.gcn = GCN(num_state=self.num_s, num_node=self.num_n)
        self.conv_extend = nn.Conv2d(self.num_s, num_in, kernel_size=1, bias=False)

    def forward(self, x, edge):
        edge = F.upsample(edge, (x.size()[-2], x.size()[-1]))

        n, c, h, w = x.size()
        edge = torch.nn.functional.softmax(edge, dim=1)[:, 1, :, :].unsqueeze(1)

        x_state_reshaped = self.conv_state(x).view(n, self.num_s, -1)
        x_proj = self.conv_proj(x)
        x_mask = x_proj * edge

        x_anchor1 = self.priors(x_mask)
        x_anchor2 = self.priors(x_mask)[:, :, 1:-1, 1:-1].reshape(n, self.num_s, -1)
        x_anchor = self.priors(x_mask)[:, :, 1:-1, 1:-1].reshape(n, self.num_s, -1)

        x_proj_reshaped = torch.matmul(x_anchor.permute(0, 2, 1), x_proj.reshape(n, self.num_s, -1))
        x_proj_reshaped = torch.nn.functional.softmax(x_proj_reshaped, dim=1)

        x_rproj_reshaped = x_proj_reshaped

        x_n_state = torch.matmul(x_state_reshaped, x_proj_reshaped.permute(0, 2, 1))
        if self.normalize:
            x_n_state = x_n_state * (1. / x_state_reshaped.size(2))
        x_n_rel = self.gcn(x_n_state)

        x_state_reshaped = torch.matmul(x_n_rel, x_rproj_reshaped)
        x_state = x_state_reshaped.view(n, self.num_s, *x.size()[2:])
        out = x + (self.conv_extend(x_state))

        return out


class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1   = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2   = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)


class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1

        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)


class PolypPVT(nn.Module):
    def __init__(self, channel=32):
        super(PolypPVT, self).__init__()

        self.backbone = pvt_v2_b2()  # [64, 128, 320, 512]
        path = './pretrained_pth/pvt_v2_b2.pth'
        save_model = torch.load(path)
        model_dict = self.backbone.state_dict()
        state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
        model_dict.update(state_dict)
        self.backbone.load_state_dict(model_dict)

        self.Translayer2_0 = BasicConv2d(64, channel, 1)
        self.Translayer2_1 = BasicConv2d(128, channel, 1)
        self.Translayer3_1 = BasicConv2d(320, channel, 1)
        self.Translayer4_1 = BasicConv2d(512, channel, 1)

        self.CFM = CFM(channel)
        self.ca = ChannelAttention(64)
        self.sa = SpatialAttention()
        self.SAM = SAM()
        
        self.down05 = nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=True)
        self.out_SAM = nn.Conv2d(channel, 1, 1)
        self.out_CFM = nn.Conv2d(channel, 1, 1)


    def forward(self, x):

        # backbone
        pvt = self.backbone(x)
        x1 = pvt[0]
        x2 = pvt[1]
        x3 = pvt[2]
        x4 = pvt[3]
        
        # CIM
        x1 = self.ca(x1) * x1 # channel attention
        cim_feature = self.sa(x1) * x1 # spatial attention


        # CFM
        x2_t = self.Translayer2_1(x2)  
        x3_t = self.Translayer3_1(x3)  
        x4_t = self.Translayer4_1(x4)  
        cfm_feature = self.CFM(x4_t, x3_t, x2_t)

        # SAM
        T2 = self.Translayer2_0(cim_feature)
        T2 = self.down05(T2)
        sam_feature = self.SAM(cfm_feature, T2)

        prediction1 = self.out_CFM(cfm_feature)
        prediction2 = self.out_SAM(sam_feature)

        prediction1_8 = F.interpolate(prediction1, scale_factor=8, mode='bilinear') 
        prediction2_8 = F.interpolate(prediction2, scale_factor=8, mode='bilinear')  
        return prediction1_8, prediction2_8


if __name__ == '__main__':
    model = PolypPVT().cuda()
    input_tensor = torch.randn(1, 3, 352, 352).cuda()

    prediction1, prediction2 = model(input_tensor)
    print(prediction1.size(), prediction2.size())