Spaces:
Sleeping
Sleeping
File size: 7,800 Bytes
fb36382 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from lib.pvtv2 import pvt_v2_b2
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicConv2d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(in_planes, out_planes,
kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, bias=False)
self.bn = nn.BatchNorm2d(out_planes)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
return x
class CFM(nn.Module):
def __init__(self, channel):
super(CFM, self).__init__()
self.relu = nn.ReLU(True)
self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv_upsample1 = BasicConv2d(channel, channel, 3, padding=1)
self.conv_upsample2 = BasicConv2d(channel, channel, 3, padding=1)
self.conv_upsample3 = BasicConv2d(channel, channel, 3, padding=1)
self.conv_upsample4 = BasicConv2d(channel, channel, 3, padding=1)
self.conv_upsample5 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)
self.conv_concat2 = BasicConv2d(2 * channel, 2 * channel, 3, padding=1)
self.conv_concat3 = BasicConv2d(3 * channel, 3 * channel, 3, padding=1)
self.conv4 = BasicConv2d(3 * channel, channel, 3, padding=1)
def forward(self, x1, x2, x3):
x1_1 = x1
x2_1 = self.conv_upsample1(self.upsample(x1)) * x2
x3_1 = self.conv_upsample2(self.upsample(self.upsample(x1))) \
* self.conv_upsample3(self.upsample(x2)) * x3
x2_2 = torch.cat((x2_1, self.conv_upsample4(self.upsample(x1_1))), 1)
x2_2 = self.conv_concat2(x2_2)
x3_2 = torch.cat((x3_1, self.conv_upsample5(self.upsample(x2_2))), 1)
x3_2 = self.conv_concat3(x3_2)
x1 = self.conv4(x3_2)
return x1
class GCN(nn.Module):
def __init__(self, num_state, num_node, bias=False):
super(GCN, self).__init__()
self.conv1 = nn.Conv1d(num_node, num_node, kernel_size=1)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(num_state, num_state, kernel_size=1, bias=bias)
def forward(self, x):
h = self.conv1(x.permute(0, 2, 1)).permute(0, 2, 1)
h = h - x
h = self.relu(self.conv2(h))
return h
class SAM(nn.Module):
def __init__(self, num_in=32, plane_mid=16, mids=4, normalize=False):
super(SAM, self).__init__()
self.normalize = normalize
self.num_s = int(plane_mid)
self.num_n = (mids) * (mids)
self.priors = nn.AdaptiveAvgPool2d(output_size=(mids + 2, mids + 2))
self.conv_state = nn.Conv2d(num_in, self.num_s, kernel_size=1)
self.conv_proj = nn.Conv2d(num_in, self.num_s, kernel_size=1)
self.gcn = GCN(num_state=self.num_s, num_node=self.num_n)
self.conv_extend = nn.Conv2d(self.num_s, num_in, kernel_size=1, bias=False)
def forward(self, x, edge):
edge = F.upsample(edge, (x.size()[-2], x.size()[-1]))
n, c, h, w = x.size()
edge = torch.nn.functional.softmax(edge, dim=1)[:, 1, :, :].unsqueeze(1)
x_state_reshaped = self.conv_state(x).view(n, self.num_s, -1)
x_proj = self.conv_proj(x)
x_mask = x_proj * edge
x_anchor1 = self.priors(x_mask)
x_anchor2 = self.priors(x_mask)[:, :, 1:-1, 1:-1].reshape(n, self.num_s, -1)
x_anchor = self.priors(x_mask)[:, :, 1:-1, 1:-1].reshape(n, self.num_s, -1)
x_proj_reshaped = torch.matmul(x_anchor.permute(0, 2, 1), x_proj.reshape(n, self.num_s, -1))
x_proj_reshaped = torch.nn.functional.softmax(x_proj_reshaped, dim=1)
x_rproj_reshaped = x_proj_reshaped
x_n_state = torch.matmul(x_state_reshaped, x_proj_reshaped.permute(0, 2, 1))
if self.normalize:
x_n_state = x_n_state * (1. / x_state_reshaped.size(2))
x_n_rel = self.gcn(x_n_state)
x_state_reshaped = torch.matmul(x_n_rel, x_rproj_reshaped)
x_state = x_state_reshaped.view(n, self.num_s, *x.size()[2:])
out = x + (self.conv_extend(x_state))
return out
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class PolypPVT(nn.Module):
def __init__(self, channel=32):
super(PolypPVT, self).__init__()
self.backbone = pvt_v2_b2() # [64, 128, 320, 512]
path = './pretrained_pth/pvt_v2_b2.pth'
save_model = torch.load(path)
model_dict = self.backbone.state_dict()
state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
model_dict.update(state_dict)
self.backbone.load_state_dict(model_dict)
self.Translayer2_0 = BasicConv2d(64, channel, 1)
self.Translayer2_1 = BasicConv2d(128, channel, 1)
self.Translayer3_1 = BasicConv2d(320, channel, 1)
self.Translayer4_1 = BasicConv2d(512, channel, 1)
self.CFM = CFM(channel)
self.ca = ChannelAttention(64)
self.sa = SpatialAttention()
self.SAM = SAM()
self.down05 = nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=True)
self.out_SAM = nn.Conv2d(channel, 1, 1)
self.out_CFM = nn.Conv2d(channel, 1, 1)
def forward(self, x):
# backbone
pvt = self.backbone(x)
x1 = pvt[0]
x2 = pvt[1]
x3 = pvt[2]
x4 = pvt[3]
# CIM
x1 = self.ca(x1) * x1 # channel attention
cim_feature = self.sa(x1) * x1 # spatial attention
# CFM
x2_t = self.Translayer2_1(x2)
x3_t = self.Translayer3_1(x3)
x4_t = self.Translayer4_1(x4)
cfm_feature = self.CFM(x4_t, x3_t, x2_t)
# SAM
T2 = self.Translayer2_0(cim_feature)
T2 = self.down05(T2)
sam_feature = self.SAM(cfm_feature, T2)
prediction1 = self.out_CFM(cfm_feature)
prediction2 = self.out_SAM(sam_feature)
prediction1_8 = F.interpolate(prediction1, scale_factor=8, mode='bilinear')
prediction2_8 = F.interpolate(prediction2, scale_factor=8, mode='bilinear')
return prediction1_8, prediction2_8
if __name__ == '__main__':
model = PolypPVT().cuda()
input_tensor = torch.randn(1, 3, 352, 352).cuda()
prediction1, prediction2 = model(input_tensor)
print(prediction1.size(), prediction2.size()) |