Muhammed Ömer ERKOÇ
Add app.py, requirements.txt, examples and model files
37f7a06
raw
history blame
3.54 kB
import torch
import torch.nn.functional as F
import numpy as np
import cv2
from PIL import Image
import gradio as gr
from torchvision import transforms
from lib.pvt import PolypPVT # senin repo'daki model
# ----------------------
# Model yükleme
# ----------------------
pth_path = "polyp_segmentation\weights\PolypPVT.pth"
model = PolypPVT()
model.load_state_dict(torch.load(pth_path, map_location="cuda" if torch.cuda.is_available() else "cpu"))
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
# ----------------------
# Transform
# ----------------------
transform = transforms.Compose([
transforms.Resize((352, 352)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
# ----------------------
# Prediction function
# ----------------------
def predict(image: Image.Image, mask: Image.Image = None):
# Convert and preprocess input
input_tensor = transform(image).unsqueeze(0).to(device)
with torch.no_grad():
P1, P2 = model(input_tensor)
res = F.interpolate(P1 + P2, size=(352, 352), mode="bilinear", align_corners=False)
res = res.sigmoid().cpu().numpy().squeeze()
res_norm = (res - res.min()) / (res.max() - res.min() + 1e-8)
# Predicted mask binary
pred_mask = (res_norm > 0.5).astype(np.uint8)
# Make colored mask
pred_mask_color = cv2.applyColorMap((res_norm * 255).astype(np.uint8), cv2.COLORMAP_JET)
pred_mask_color = cv2.cvtColor(pred_mask_color, cv2.COLOR_BGR2RGB)
# Overlay on original
image_resized = np.array(image.resize((352, 352)))
overlay = cv2.addWeighted(image_resized, 0.6, pred_mask_color, 0.4, 0)
# If ground truth mask is provided → calculate IOU
iou_score = None
if mask is not None:
mask_resized = mask.convert("L").resize((352, 352))
gt_mask_bin = (np.array(mask_resized) > 127).astype(np.uint8)
intersection = np.logical_and(pred_mask, gt_mask_bin).sum()
union = np.logical_or(pred_mask, gt_mask_bin).sum()
iou_score = intersection / (union + 1e-8)
# GT mask to RGB
gt_mask_rgb = np.stack([gt_mask_bin * 255]*3, axis=-1)
else:
gt_mask_rgb = np.zeros_like(image_resized)
return (
Image.fromarray(image_resized), # Orijinal
Image.fromarray(pred_mask_color), # Tahmin maskesi
Image.fromarray(overlay), # Bindirilmiş
Image.fromarray(gt_mask_rgb), # Gerçek maske (boş olabilir)
f"IOU: {iou_score:.4f}" if iou_score is not None else "No GT mask provided"
)
# ----------------------
# Gradio Interface
# ----------------------
examples = [
["examples/image1.jpg", None],
["examples/image2.jpg", None],
["examples/image3.jpg", None], # maskesiz de test edilebilir
]
demo = gr.Interface(
fn=predict,
inputs=[
gr.Image(type="pil", label="Input Image"),
gr.Image(type="pil", label="Ground Truth Mask (Optional)", optional=True)
],
outputs=[
gr.Image(label="Original"),
gr.Image(label="Predicted Mask"),
gr.Image(label="Overlay"),
gr.Image(label="Ground Truth Mask"),
gr.Label(label="IOU Score")
],
title="Polyp Segmentation - PolypPVT",
description="Upload an endoscopic image to predict polyp segmentation mask. Optionally, provide a ground truth mask to calculate IOU.",
examples=examples,
)
if __name__ == "__main__":
demo.launch()