File size: 36,578 Bytes
315df8c
 
65ab3e8
d4c0faf
315df8c
65ab3e8
 
 
03d4b22
 
 
 
65ab3e8
 
 
 
 
bf225d6
0c60f80
65ab3e8
 
 
 
 
 
 
fb8ae8b
10ac92f
 
 
 
 
 
 
65ab3e8
315df8c
 
 
 
 
2adc060
315df8c
 
 
 
 
 
afa1447
315df8c
 
090ad80
315df8c
 
 
 
 
 
8411e3c
a027c1d
315df8c
afa1447
315df8c
78a5b67
315df8c
 
 
a027c1d
315df8c
 
 
 
 
 
a027c1d
315df8c
 
 
 
 
 
2adc060
315df8c
 
 
 
 
 
 
 
 
090ad80
315df8c
 
 
 
 
 
8411e3c
a027c1d
315df8c
afa1447
315df8c
78a5b67
315df8c
 
 
a027c1d
315df8c
 
 
 
 
 
 
a027c1d
 
315df8c
 
 
 
 
 
 
 
2adc060
315df8c
 
 
 
 
 
 
 
 
090ad80
315df8c
 
 
 
 
 
 
8411e3c
 
315df8c
 
 
 
 
a027c1d
315df8c
afa1447
315df8c
78a5b67
315df8c
 
 
a027c1d
315df8c
 
 
 
 
 
a027c1d
315df8c
 
 
 
 
 
2adc060
315df8c
 
 
 
 
 
 
 
 
090ad80
315df8c
 
 
 
 
 
 
8411e3c
 
315df8c
 
 
 
 
a027c1d
315df8c
afa1447
315df8c
78a5b67
315df8c
 
 
a027c1d
315df8c
 
 
 
 
 
 
a027c1d
 
315df8c
 
 
 
 
 
 
 
2adc060
315df8c
 
 
 
 
 
 
 
 
090ad80
315df8c
 
 
 
 
8411e3c
315df8c
 
 
 
a027c1d
315df8c
 
a027c1d
315df8c
 
a027c1d
315df8c
 
 
 
 
2adc060
315df8c
 
 
 
 
 
 
78a5b67
315df8c
 
 
 
 
 
a027c1d
315df8c
 
 
a027c1d
315df8c
 
 
 
 
 
 
 
 
 
 
a027c1d
315df8c
 
 
a027c1d
 
315df8c
 
 
 
 
 
 
 
 
 
 
12bb60d
315df8c
 
 
 
 
 
12bb60d
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12bb60d
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78a5b67
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78a5b67
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8411e3c
315df8c
 
 
 
78a5b67
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8411e3c
315df8c
 
 
 
78a5b67
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78a5b67
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2adc060
315df8c
2adc060
 
 
 
 
 
315df8c
 
 
2adc060
315df8c
2adc060
 
 
 
 
 
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c60f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e3a7b6
 
 
 
 
0c60f80
 
 
 
 
 
 
507d30c
f328957
 
b2d73a2
6662d54
f328957
 
6662d54
 
 
 
 
 
 
 
 
f328957
b2d73a2
 
f328957
 
 
 
 
 
 
 
b2d73a2
 
 
f328957
6662d54
 
 
f328957
b2d73a2
f328957
6662d54
 
 
 
 
 
 
 
 
 
f328957
 
 
 
 
 
 
b2d73a2
f328957
 
 
 
 
 
6662d54
f328957
6662d54
f328957
6662d54
 
f328957
6662d54
 
f328957
6662d54
 
f328957
6662d54
 
f328957
6662d54
f328957
 
 
 
 
 
 
 
 
 
6662d54
f328957
 
3a7ca19
e37eff3
03d4b22
e37eff3
03d4b22
 
 
3a7ca19
 
b2d73a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03d4b22
 
 
 
3a7ca19
d9bd7ce
b2d73a2
03d4b22
 
 
 
 
 
 
 
 
 
 
 
 
12bb60d
03d4b22
 
 
b2d73a2
03d4b22
 
 
b2d73a2
03d4b22
65ab3e8
12bb60d
315df8c
 
 
 
f75c2e3
9808fbf
315df8c
 
 
 
 
 
f75c2e3
9808fbf
315df8c
507d30c
315df8c
9808fbf
315df8c
 
 
507d30c
d4c0faf
3a7ca19
 
d4c0faf
6662d54
 
ace16dc
 
65ab3e8
 
 
 
ace16dc
 
bf225d6
 
65ab3e8
 
 
 
 
 
ace16dc
 
 
 
65ab3e8
 
507d30c
65ab3e8
 
 
 
 
5b9980d
 
 
65ab3e8
d4c0faf
 
0c60f80
65ab3e8
 
 
f328957
d4c0faf
 
 
 
ace16dc
 
 
 
d4c0faf
 
 
 
 
88864af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c0faf
 
ace16dc
d4c0faf
 
 
88864af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4c0faf
 
6662d54
 
65ab3e8
0c60f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a027c1d
507d30c
 
 
f328957
3a7ca19
f328957
507d30c
6662d54
 
f328957
6662d54
f328957
6662d54
5b9980d
 
f328957
 
 
507d30c
f328957
3a7ca19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f328957
 
 
 
 
 
 
fb8ae8b
 
 
65ab3e8
f328957
 
 
fb8ae8b
 
 
 
65ab3e8
 
f328957
65ab3e8
 
 
 
a027c1d
f328957
65ab3e8
d4c0faf
 
65ab3e8
bf225d6
0c60f80
3a7ca19
fb8ae8b
10ac92f
 
d4c0faf
10ac92f
 
65ab3e8
 
 
3a7ca19
5b9980d
507d30c
6662d54
65ab3e8
507d30c
f328957
b2d73a2
f328957
3a7ca19
507d30c
b2d73a2
3a7ca19
65ab3e8
507d30c
3a7ca19
 
f328957
65ab3e8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
#pragma once

#include "common.cuh"
#include "convert.cuh"
#include "vecdotq.cuh"

#include <cstdint>

#define FATTN_KQ_STRIDE       256
#define HALF_MAX_HALF         __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
#define SOFTMAX_FTZ_THRESHOLD -20.0f                   // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.

typedef void (* fattn_kernel_t)(
        const char * __restrict__ Q,
        const char * __restrict__ K,
        const char * __restrict__ V,
        const char * __restrict__ mask,
        const char * __restrict__ sinks,
        const int  * __restrict__ KV_max,
        float      * __restrict__ dst,
        float2     * __restrict__ dst_meta,
        const float scale,
        const float max_bias,
        const float m0,
        const float m1,
        const uint32_t n_head_log2,
        const float logit_softcap,
        const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
                            const int32_t nb01, const int32_t nb02, const int32_t nb03,
        const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
                            const int32_t nb11, const int32_t nb12, const int64_t nb13,
                            const int32_t nb21, const int32_t nb22, const int64_t nb23,
                            const int32_t ne31, const int32_t ne32, const int32_t ne33,
                            const int32_t nb31, const int32_t nb32, const int64_t nb33);

typedef half (*vec_dot_KQ_f16_t)(
    const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
typedef float (*vec_dot_KQ_f32_t)(
    const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);

template<typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
    const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {

    const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
    GGML_UNUSED(Q_v);

    T sum = 0.0f;

#pragma unroll
    for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
        const int k_KQ = k_KQ_0 + threadIdx.x;

        const int ib    = k_KQ /  QI8_1;
        const int iqs4  = k_KQ %  QI4_0;
        const int shift = k_KQ & (QI8_1/2);

        const int v = (get_int_b2(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
        const int u = Q_q8[k_KQ_0/warp_size];

        const int sumi = ggml_cuda_dp4a(v, u, 0);

#ifdef FP16_AVAILABLE
        if (std::is_same<T, half>::value) {
            const half2  * Q_ds = (const half2  *) Q_ds_v;

            const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/warp_size];
            sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
        } else
#endif // FP16_AVAILABLE
        {
            const float2 * Q_ds = (const float2 *) Q_ds_v;

            sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (8/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
        }
    }

    return sum;
}

template<typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
    const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {

    const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
    GGML_UNUSED(Q_v);

    T sum = 0.0f;

#pragma unroll
    for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
        const int k_KQ = k_KQ_0 + threadIdx.x;

        const int ib    = k_KQ /  QI8_1;
        const int iqs4  = k_KQ %  QI4_1;
        const int shift = k_KQ & (QI8_1/2);

        const int v = (get_int_b4(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
        const int u = Q_q8[k_KQ_0/warp_size];

        const int sumi = ggml_cuda_dp4a(v, u, 0);

#ifdef FP16_AVAILABLE
        if (std::is_same<T, half>::value) {
            const half2  * Q_ds = (const half2  *) Q_ds_v;

            const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/warp_size];
            const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
            sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
        } else
#endif // FP16_AVAILABLE
        {
            const float2 * Q_ds = (const float2 *) Q_ds_v;

            const float sumid4d8   =  __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
            const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;

            sum += (T) (sumid4d8 + m4s8scaled);
        }
    }

    return sum;
}

template<typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
    const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {

    const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
    GGML_UNUSED(Q_v);

    T sum = 0.0f;

#pragma unroll
    for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
        const int k_KQ = k_KQ_0 + threadIdx.x;

        const int ib    = k_KQ /  QI8_1;
        const int iqs4  = k_KQ %  QI5_0;
        const int iqs8  = k_KQ %  QI8_1;
        const int shift = k_KQ & (QI8_1/2);

        int v = (get_int_b2(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
        const int vh = get_int_b2(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
        v |= (vh <<  4) & 0x00000010; // 0 ->  4
        v |= (vh << 11) & 0x00001000; // 1 -> 12
        v |= (vh << 18) & 0x00100000; // 2 -> 20
        v |= (vh << 25) & 0x10000000; // 3 -> 28

        const int u = Q_q8[k_KQ_0/warp_size];

        const int sumi = ggml_cuda_dp4a(v, u, 0);

#ifdef FP16_AVAILABLE
        if (std::is_same<T, half>::value) {
            const half2  * Q_ds = (const half2  *) Q_ds_v;

            const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/warp_size];
            sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
        } else
#endif // FP16_AVAILABLE
        {
            const float2 * Q_ds = (const float2 *) Q_ds_v;

            sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/warp_size].x - (16/QI8_1)*Q_ds[k_KQ_0/warp_size].y));
        }
    }

    return sum;
}

template<typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
    const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {

    const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
    GGML_UNUSED(Q_v);

    T sum = 0.0f;

#pragma unroll
    for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
        const int k_KQ = k_KQ_0 + threadIdx.x;

        const int ib    = k_KQ /  QI8_1;
        const int iqs4  = k_KQ %  QI5_1;
        const int iqs8  = k_KQ %  QI8_1;
        const int shift = k_KQ & (QI8_1/2);

        int v = (get_int_b2(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
        const int vh = get_int_b2(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
        v |= (vh <<  4) & 0x00000010; // 0 ->  4
        v |= (vh << 11) & 0x00001000; // 1 -> 12
        v |= (vh << 18) & 0x00100000; // 2 -> 20
        v |= (vh << 25) & 0x10000000; // 3 -> 28

        const int u = Q_q8[k_KQ_0/warp_size];

        const int sumi = ggml_cuda_dp4a(v, u, 0);

#ifdef FP16_AVAILABLE
        if (std::is_same<T, half>::value) {
            const half2  * Q_ds = (const half2  *) Q_ds_v;

            const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/warp_size];
            const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
            sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
        } else
#endif // FP16_AVAILABLE
        {
            const float2 * Q_ds = (const float2 *) Q_ds_v;

            const float sumid5d8   =  __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].x * sumi;
            const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/warp_size].y / QI8_1;

            sum += (T) (sumid5d8 + m5s8scaled);
        }
    }

    return sum;
}

template <typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
    const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {

    const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
    GGML_UNUSED(Q_v);

    T sum = 0.0f;

#pragma unroll
    for (int k_KQ_0 = 0; k_KQ_0 < int(D/sizeof(int)); k_KQ_0 += warp_size) {
        const int k_KQ = k_KQ_0 + threadIdx.x;

        const int ib  = k_KQ / QI8_0;
        const int iqs = k_KQ % QI8_0;

        const int v = get_int_b2(K_q8_0[ib].qs, iqs);

        T Q_d;
        if (std::is_same<T, half>::value) {
            const half2  * Q_ds = (const half2  *) Q_ds_v;
            Q_d = __low2half(Q_ds[k_KQ_0/warp_size]);
        } else {
            const float2 * Q_ds = (const float2 *) Q_ds_v;
            Q_d = Q_ds[k_KQ_0/warp_size].x;
        }

        sum += vec_dot_q8_0_q8_1_impl<T, 1>(&v, &Q_q8[k_KQ_0/warp_size], K_q8_0[ib].d, Q_d);
    }

    return sum;
}

template <typename T, int D, int warp_size>
static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
    const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {

    const half2 * K_h2 = (const half2 *) K_c;
    GGML_UNUSED(Q_q8);
    GGML_UNUSED(Q_ds_v);

#ifdef FP16_AVAILABLE
    if (std::is_same<T, half>::value) {
        const half2 * Q_h2 = (const half2 *) Q_v;

        half2 sum2 = make_half2(0.0f, 0.0f);

#pragma unroll
        for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
            const int k_KQ = k_KQ_0 + threadIdx.x;

            const half2 K_ik = K_h2[k_KQ];
            sum2 += K_ik * Q_h2[k_KQ_0/warp_size];
        }

        return __low2half(sum2) + __high2half(sum2);
    }
#endif // FP16_AVAILABLE

    const float2 * Q_f2 = (const float2 *) Q_v;

    float sum = 0.0f;

#pragma unroll
    for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += warp_size) {
        const int k_KQ = k_KQ_0 + threadIdx.x;

        const half2 K_ik = K_h2[k_KQ];
        sum +=  __low2float(K_ik) * Q_f2[k_KQ_0/warp_size].x;
        sum += __high2float(K_ik) * Q_f2[k_KQ_0/warp_size].y;
    }

    return sum;
}

template <typename Tds>
static __device__ __forceinline__ void quantize_q8_1_to_shared(
    const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {

    float vals[sizeof(int)] = {0.0f};
#pragma unroll
    for (int l = 0; l < int(sizeof(int)); ++l) {
        vals[l] = scale * x[4*threadIdx.x + l];
    }

    float amax = fabsf(vals[0]);
    float sum  = vals[0];
#pragma unroll
    for (int l = 1; l < int(sizeof(int)); ++l) {
        amax = fmaxf(amax, fabsf(vals[l]));
        sum += vals[l];
    }
#pragma unroll
    for (int mask = QI8_1/2; mask > 0; mask >>= 1) {
        amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32));
        sum +=             __shfl_xor_sync(0xFFFFFFFF, sum,  mask, 32);
    }

    const float d = amax / 127;
    int q32 = 0;
    int8_t * q8 = (int8_t *) &q32;

    if (d != 0.0f) {
#pragma unroll
        for (int l = 0; l < int(sizeof(int)); ++l) {
            q8[l] = roundf(vals[l] / d);
        }
    }

    yq32[threadIdx.x] = q32;
    if (threadIdx.x % QI8_1 == 0) {
        if (std::is_same<Tds, half2>::value) {
            ((half2  *) yds)[threadIdx.x/QI8_1] =  make_half2(d, sum);
        } else {
            ((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum);
        }
    }
}

typedef half  (*dequantize_1_f16_t)(const void *, const int64_t);
typedef float (*dequantize_1_f32_t)(const void *, const int64_t);

template <typename T>
static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
    const block_q4_0 * x = (const block_q4_0 *) vx;

    const int64_t ib    =  i          /  QK4_0;
    const int     iqs   =  i          % (QK4_0/2);
    const int     shift = (i % QK4_0) / (QK4_0/2);

    const T   d  = x[ib].d;
    const int q0 = x[ib].qs[iqs];
    const int q  = ((q0 >> (4*shift)) & 0x0F) - 8;

#ifdef FP16_AVAILABLE
    if (std::is_same<T, half>::value) {
        return ((half) d)*((half) q);
    }
#endif // FP16_AVAILABLE

    return ((float) d)*((float) q);
}

template <typename T>
static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
    const block_q4_1 * x = (const block_q4_1 *) vx;

    const int64_t ib    =  i          /  QK4_1;
    const int     iqs   =  i          % (QK4_1/2);
    const int     shift = (i % QK4_1) / (QK4_1/2);

    const half2 dm = x[ib].dm;
    const int   q0 = x[ib].qs[iqs];
    const int   q  = ((q0 >> (4*shift)) & 0x0F);

#ifdef FP16_AVAILABLE
    if (std::is_same<T, half>::value) {
        return __low2half(dm)*((half) q) + __high2half(dm);
    }
#endif // FP16_AVAILABLE

    return __low2float(dm)*((float) q) + __high2float(dm);
}

template <typename T>
static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
    const block_q5_0 * x = (const block_q5_0 *) vx;

    const int64_t ib    =  i          /  QK5_0;
    const int     idq   =  i          %  QK5_0;
    const int     iqs   =  i          % (QK5_0/2);
    const int     shift = (i % QK5_0) / (QK5_0/2);

    const T   d   = x[ib].d;
    const int ql0 = x[ib].qs[iqs];
    const int qh0 = get_int_b2(x[ib].qh, 0);
    const int ql  = ((ql0 >> (4*shift)) & 0x0F);
    const int qh  = ((qh0 >> idq) << 4) & 0x10;
    const int q   = (ql | qh) - 16;

#ifdef FP16_AVAILABLE
    if (std::is_same<T, half>::value) {
        return ((half) d)*((half) q);
    }
#endif // FP16_AVAILABLE

    return ((float) d)*((float) q);
}

template <typename T>
static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
    const block_q5_1 * x = (const block_q5_1 *) vx;

    const int64_t ib    =  i          /  QK5_1;
    const int     idq   =  i          %  QK5_1;
    const int     iqs   =  i          % (QK5_1/2);
    const int     shift = (i % QK5_1) / (QK5_1/2);

    const half2 dm  = x[ib].dm;
    const int   ql0 = x[ib].qs[iqs];
    const int   qh0 = get_int_b4(x[ib].qh, 0);
    const int   ql  = ((ql0 >> (4*shift)) & 0x0F);
    const int   qh  = ((qh0 >> idq) << 4) & 0x10;
    const int   q   = (ql | qh);

#ifdef FP16_AVAILABLE
    if (std::is_same<T, half>::value) {
        return __low2half(dm)*((half) q) + __high2half(dm);
    }
#endif // FP16_AVAILABLE

    return __low2float(dm)*((float) q) + __high2float(dm);
}

template <typename T>
static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
    const block_q8_0 * x = (const block_q8_0 *) vx;

    const int64_t ib  = i / QK8_0;
    const int     iqs = i % QK8_0;

    const T   d = x[ib].d;
    const int q = x[ib].qs[iqs];

#ifdef FP16_AVAILABLE
    if (std::is_same<T, half>::value) {
        return ((half) d)*((half) q);
    }
#endif // FP16_AVAILABLE

    return ((float) d)*((float) q);
}

template <typename T>
static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
    const half * x = (const half *) vx;

    return x[i];
}

template <int D, int warp_size = WARP_SIZE>
constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
    return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<half, D, warp_size> :
        type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<half, D, warp_size> :
        type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<half, D, warp_size> :
        type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<half, D, warp_size> :
        type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<half, D, warp_size> :
        type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<half, D, warp_size> :
        nullptr;
}

template <int D, int warp_size = WARP_SIZE>
constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
    return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0<float, D, warp_size> :
        type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1<float, D, warp_size> :
        type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0<float, D, warp_size> :
        type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1<float, D, warp_size> :
        type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0<float, D, warp_size> :
        type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16<float, D, warp_size> :
        nullptr;
}

constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
    return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<half> :
        type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<half> :
        type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<half> :
        type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<half> :
        type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<half> :
        type_V == GGML_TYPE_F16 ? dequantize_1_f16<half> :
        nullptr;
}

constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
    return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0<float> :
        type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1<float> :
        type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0<float> :
        type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1<float> :
        type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0<float> :
        type_V == GGML_TYPE_F16 ? dequantize_1_f16<float> :
        nullptr;
}

template <int ncols1>
__launch_bounds__(FATTN_KQ_STRIDE/2, 1)
static __global__ void flash_attn_mask_to_KV_max(
        const half2 * __restrict__ mask, int * __restrict__ KV_max, const int ne30, const int s31, const int s33) {
    const int ne31     = gridDim.x;
    const int tid      = threadIdx.x;
    const int sequence = blockIdx.y;
    const int jt       = blockIdx.x;

    mask += sequence*s33 + jt*ncols1*s31;

    __shared__ int buf_iw[WARP_SIZE];
    if (tid < WARP_SIZE) {
        buf_iw[tid] = 1;
    }
    __syncthreads();

    int KV_max_sj = (ne30 - 1) * FATTN_KQ_STRIDE;
    for (; KV_max_sj >= 0; KV_max_sj -= FATTN_KQ_STRIDE) {
        int all_inf = 1;

#pragma unroll
        for (int j = 0; j < ncols1; ++j) {
            const float2 tmp = __half22float2(mask[j*s31 + KV_max_sj/2 + tid]);
            all_inf = all_inf && int(isinf(tmp.x)) && int(isinf(tmp.y));
        }

        all_inf = warp_reduce_all(all_inf);
        if (tid % WARP_SIZE == 0) {
            buf_iw[tid / WARP_SIZE] = all_inf;
        }
        __syncthreads();
        all_inf = buf_iw[tid % WARP_SIZE];
        __syncthreads();
        all_inf = warp_reduce_all(all_inf);

        if (!all_inf) {
            break;
        }
    }

    // If the break in the loop was not triggered, KV_max_sj is now -FATTN_KQ_STRIDE.
    // If the break was triggered it's the lower edge of the tile with the first non-masked values.
    // In either case, walk back the decrementation by FATTN_KQ_STRIDE.
    KV_max_sj += FATTN_KQ_STRIDE;

    if (threadIdx.x != 0) {
        return;
    }

    KV_max[sequence*ne31 + jt] = KV_max_sj;
}

template<int D, int ncols1, int ncols2> // D == head size
__launch_bounds__(D, 1)
static __global__ void flash_attn_stream_k_fixup(
        float * __restrict__ dst, const float2 * __restrict__ dst_fixup, const int ne01, const int ne02, const int ne03, const int ne11) {
    constexpr int ncols = ncols1*ncols2;

    const int bidx0 = blockIdx.x;
    const int j     = blockIdx.y;
    const int c     = blockIdx.z;
    const int jc    = j*ncols2 + c;
    const int tid   = threadIdx.x;

    const float * dst_fixup_data = ((const float *) dst_fixup) + gridDim.x*(2*2*ncols);

    const int iter_k = ne11 / FATTN_KQ_STRIDE;
    const int iter_j = (ne01 + (ncols1 - 1)) / ncols1;

    const int kbc0      = (bidx0 + 0)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
    const int kbc0_stop = (bidx0 + 1)*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;

    const bool did_not_have_any_data   = kbc0 == kbc0_stop;
    const bool wrote_beginning_of_tile = kbc0 % iter_k == 0;
    const bool did_not_write_last      = kbc0/iter_k == kbc0_stop/iter_k && kbc0_stop % iter_k != 0;
    if (did_not_have_any_data || wrote_beginning_of_tile || did_not_write_last) {
        return;
    }

    const int sequence = kbc0 / (iter_k*iter_j*(ne02/ncols2));
    const int head = (kbc0 - iter_k*iter_j*(ne02/ncols2)*sequence) / (iter_k*iter_j);
    const int jt = (kbc0 - iter_k*iter_j*(ne02/ncols2)*sequence - iter_k*iter_j*head) / iter_k; // j index of current tile.

    if (jt*ncols1 + j >= ne01) {
        return;
    }

    dst += sequence*ne02*ne01*D + jt*ne02*(ncols1*D) + head*(ncols2*D) + (j*ne02 + c)*D + tid;

    // Load the partial result that needs a fixup:
    float dst_val = 0.0f;
    float max_val = 0.0f;
    float rowsum  = 0.0f;
    {
        dst_val = *dst;

        const float2 tmp = dst_fixup[bidx0*ncols + jc];
        max_val = tmp.x;
        rowsum  = tmp.y;
    }

    // Iterate over previous blocks and compute the combined results.
    // All CUDA blocks that get here must have a previous block that needs a fixup.
    int bidx = bidx0 - 1;
    int kbc_stop = kbc0;
    while(true) {
        const int kbc = bidx*(iter_k*iter_j*(ne02/ncols2)*ne03) / gridDim.x;
        if (kbc == kbc_stop) { // Did not have any data.
            bidx--;
            kbc_stop = kbc;
            continue;
        }

        const float dst_add = dst_fixup_data[bidx*ncols*D + jc*D + tid];

        const float2 tmp = dst_fixup[(gridDim.x + bidx)*ncols + jc];

        // Scale the current and new value accumulators depending on the max. values.
        const float max_val_new = fmaxf(max_val, tmp.x);

        const float diff_val = max_val - max_val_new;
        const float diff_add = tmp.x   - max_val_new;

        const float scale_val = diff_val >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_val) : 0.0f;
        const float scale_add = diff_add >= SOFTMAX_FTZ_THRESHOLD ? expf(diff_add) : 0.0f;

        dst_val = scale_val*dst_val + scale_add*dst_add;
        rowsum  = scale_val*rowsum  + scale_add*tmp.y;

        max_val = max_val_new;

        // If this block started in a previous tile we are done and don't need to combine additional partial results.
        if (kbc % iter_k == 0 || kbc/iter_k < kbc0/iter_k) {
            break;
        }
        bidx--;
        kbc_stop = kbc;
    }

    // Write back final result:
    *dst = dst_val / rowsum;
}

template<int D> // D == head size
#if !defined(GGML_USE_HIP)
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIP)
static __global__ void flash_attn_combine_results(
        const float  * __restrict__ VKQ_parts,
        const float2 * __restrict__ VKQ_meta,
        float * __restrict__ dst,
        const int parallel_blocks) {
    // Dimension 0: threadIdx.x
    // Dimension 1: blockIdx.x
    // Dimension 2: blockIdx.y
    // Dimension 3: blockIdx.z
    // Memory layout is permuted with [0, 2, 1, 3]

    const int ne01 = gridDim.x;
    const int ne02 = gridDim.y;

    const int col      = blockIdx.x;
    const int head     = blockIdx.y;
    const int sequence = blockIdx.z;

    const int j_dst_unrolled = (sequence*ne01 + col)*ne02 + head;

    VKQ_parts += j_dst_unrolled * parallel_blocks*D;
    VKQ_meta  += j_dst_unrolled * parallel_blocks;
    dst       += j_dst_unrolled *                 D;

    const int tid = threadIdx.x;
    __builtin_assume(tid < D);

    extern __shared__ float2 meta[];
    for (int i = tid; i < 2*parallel_blocks; i += D) {
        ((float *) meta)[i] = ((const float *)VKQ_meta) [i];
    }

    __syncthreads();

    float kqmax = meta[0].x;
    for (int l = 1; l < parallel_blocks; ++l) {
        kqmax = max(kqmax, meta[l].x);
    }

    float VKQ_numerator   = 0.0f;
    float VKQ_denominator = 0.0f;
    for (int l = 0; l < parallel_blocks; ++l) {
        const float diff = meta[l].x - kqmax;
        float KQ_max_scale = expf(diff);
        const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
        *((uint32_t *) &KQ_max_scale) &= ftz_mask;

        VKQ_numerator   += KQ_max_scale * VKQ_parts[l*D + tid];
        VKQ_denominator += KQ_max_scale * meta[l].y;
    }

    dst[tid] = VKQ_numerator / VKQ_denominator;
}

[[noreturn]]
static void on_no_fattn_vec_case(const int D) {
    if (D == 64) {
        fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
        fprintf(stderr, "By default only f16 KV cache is supported.\n");
        fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
        GGML_ABORT("fatal error");
    } else if (D == 128) {
        fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
        fprintf(stderr, "Supported combinations:\n");
        fprintf(stderr, "  - K == q4_0, V == q4_0,  4.50 BPV\n");
        fprintf(stderr, "  - K == q8_0, V == q8_0,  8.50 BPV\n");
        fprintf(stderr, "  - K == f16,  V == f16,  16.00 BPV\n");
        fprintf(stderr, "Compile with GGML_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
        GGML_ABORT("fatal error");
    } else {
        fprintf(stderr, "Unsupported KV type combination for head_size %d.\n", D);
        fprintf(stderr, "Only f16 is supported.\n");
        GGML_ABORT("fatal error");
    }
}

template <int DV, int ncols1, int ncols2>
void launch_fattn(
    ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, const int nwarps, const size_t nbytes_shared,
    const int KQ_row_granularity, const bool need_f16_K, const bool need_f16_V, const bool stream_k, const int warp_size = WARP_SIZE
) {
    constexpr int ncols = ncols1 * ncols2;

    const bool is_mla = DV == 512; // TODO better parameterization

    const ggml_tensor * Q = dst->src[0];
    const ggml_tensor * K = dst->src[1];
    const ggml_tensor * V = dst->src[2];

    GGML_ASSERT(V || is_mla);

    const ggml_tensor * mask  = dst->src[3];
    const ggml_tensor * sinks = dst->src[4];

    ggml_tensor * KQV = dst;

    GGML_ASSERT(Q->type == GGML_TYPE_F32);
    GGML_ASSERT(KQV->type == GGML_TYPE_F32);

    GGML_ASSERT(      Q->nb[0] == ggml_element_size(Q));
    GGML_ASSERT(      K->nb[0] == ggml_element_size(K));
    GGML_ASSERT(!V || V->nb[0] == ggml_element_size(V));

    GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
    GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
        "the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");

    GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");

    ggml_cuda_pool & pool = ctx.pool();
    cudaStream_t main_stream = ctx.stream();
    const int id  = ggml_cuda_get_device();
    const int cc  = ggml_cuda_info().devices[id].cc;
    const int nsm = ggml_cuda_info().devices[id].nsm;

    ggml_cuda_pool_alloc<half>   K_f16(pool);
    ggml_cuda_pool_alloc<half>   V_f16(pool);
    ggml_cuda_pool_alloc<int>    KV_max(pool);
    ggml_cuda_pool_alloc<float>  dst_tmp(pool);
    ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);

    const char * K_data = (const char *) K->data;
    size_t nb11 = K->nb[1];
    size_t nb12 = K->nb[2];
    size_t nb13 = K->nb[3];

    const char * V_data = V ? (const char *) V->data : nullptr;
    size_t nb21 = V ? V->nb[1] : nb11;
    size_t nb22 = V ? V->nb[2] : nb12;
    size_t nb23 = V ? V->nb[3] : nb13;

    if (need_f16_K && K->type != GGML_TYPE_F16) {
        const size_t bs = ggml_blck_size(K->type);
        const size_t ts = ggml_type_size(K->type);

        K_f16.alloc(ggml_nelements(K));
        if (ggml_is_contiguously_allocated(K)) {
            to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(K->type);
            to_fp16(K_data, K_f16.ptr, ggml_nelements(K), main_stream);

            nb11 = nb11*bs*sizeof(half)/ts;
            nb12 = nb12*bs*sizeof(half)/ts;
            nb13 = nb13*bs*sizeof(half)/ts;
        } else {
            GGML_ASSERT(K->nb[0] == ts);
            to_fp16_nc_cuda_t to_fp16 = ggml_get_to_fp16_nc_cuda(K->type);
            const int64_t s01 = nb11 / ts;
            const int64_t s02 = nb12 / ts;
            const int64_t s03 = nb13 / ts;
            to_fp16(K_data, K_f16.ptr, K->ne[0], K->ne[1], K->ne[2], K->ne[3], s01, s02, s03, main_stream);

            nb11 = K->ne[0] * sizeof(half);
            nb12 = K->ne[1] * nb11;
            nb13 = K->ne[2] * nb12;
        }
        K_data = (char *) K_f16.ptr;
    }

    if (V && need_f16_V && V->type != GGML_TYPE_F16) {
        const size_t bs = ggml_blck_size(V->type);
        const size_t ts = ggml_type_size(V->type);

        V_f16.alloc(ggml_nelements(V));
        if (ggml_is_contiguously_allocated(V)) {
            to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(V->type);
            to_fp16(V_data, V_f16.ptr, ggml_nelements(V), main_stream);
            V_data = (char *) V_f16.ptr;

            nb21 = nb21*bs*sizeof(half)/ts;
            nb22 = nb22*bs*sizeof(half)/ts;
            nb23 = nb23*bs*sizeof(half)/ts;
        } else {
            GGML_ASSERT(V->nb[0] == ts);
            to_fp16_nc_cuda_t to_fp16 = ggml_get_to_fp16_nc_cuda(V->type);
            const int64_t s01 = nb21 / ts;
            const int64_t s02 = nb22 / ts;
            const int64_t s03 = nb23 / ts;
            to_fp16(V_data, V_f16.ptr, V->ne[0], V->ne[1], V->ne[2], V->ne[3], s01, s02, s03, main_stream);

            nb21 = V->ne[0] * sizeof(half);
            nb22 = V->ne[1] * nb21;
            nb23 = V->ne[2] * nb22;
        }
        V_data = (char *) V_f16.ptr;
    }

    const int ntiles_x = ((Q->ne[1] + ncols1 - 1) / ncols1);
    const int ntiles_total = ntiles_x * (Q->ne[2] / ncols2) * Q->ne[3];

    // Optional optimization where the mask is scanned to determine whether part of the calculation can be skipped.
    // Only worth the overhead if there is at lease one FATTN_KQ_STRIDE x FATTN_KQ_STRIDE square to be skipped or
    //     multiple sequences of possibly different lengths.
    if (mask && (Q->ne[1] >= 1024 || Q->ne[3] > 1)) {
        const int s31 = mask->nb[1] / sizeof(half2);
        const int s33 = mask->nb[3] / sizeof(half2);

        const dim3 blocks_num_KV_max(ntiles_x, Q->ne[3], 1);
        const dim3 block_dim_KV_max(FATTN_KQ_STRIDE/2, 1, 1);

        const int ne_KV_max = blocks_num_KV_max.x*blocks_num_KV_max.y;
        const int iter_k = K->ne[1] / FATTN_KQ_STRIDE;

        KV_max.alloc(ne_KV_max);
        flash_attn_mask_to_KV_max<ncols1><<<blocks_num_KV_max, block_dim_KV_max, 0, main_stream>>>
            ((const half2 *) mask->data, KV_max.ptr, iter_k, s31, s33);
        CUDA_CHECK(cudaGetLastError());
    }

    int parallel_blocks = 1;

    const dim3 block_dim(warp_size, nwarps, 1);
    int max_blocks_per_sm = 1; // Max. number of active blocks limited by occupancy.
    CUDA_CHECK(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&max_blocks_per_sm, fattn_kernel, block_dim.x * block_dim.y * block_dim.z, nbytes_shared));

    dim3 blocks_num;
    if (stream_k) {
        // For short contexts it can be faster to have the SMs work on whole tiles because this lets us skip the fixup.
        const int max_blocks = max_blocks_per_sm*nsm;
        const int tiles_nwaves = (ntiles_total + max_blocks - 1) / max_blocks;
        const int tiles_efficiency_percent = 100 * ntiles_total / (max_blocks*tiles_nwaves);

        const int nblocks_stream_k = max_blocks;

        const bool use_stream_k = cc >= GGML_CUDA_CC_ADA_LOVELACE || tiles_efficiency_percent < 75;

        blocks_num.x = use_stream_k ? nblocks_stream_k : ntiles_total;
        blocks_num.y = 1;
        blocks_num.z = 1;

        dst_tmp_meta.alloc(blocks_num.x*ncols * (2*2 + DV) * sizeof(float));
    } else {
        GGML_ASSERT(K->ne[1] % KQ_row_granularity == 0);
        const int ntiles_KQ = K->ne[1] / KQ_row_granularity; // Max. number of parallel blocks limited by tensor size.

        // parallel_blocks should be at least large enough to achieve max. occupancy for a single wave:
        parallel_blocks = std::max((nsm * max_blocks_per_sm) / ntiles_total, 1);

        // parallel_blocks must not be larger than what the tensor size allows:
        parallel_blocks = std::min(parallel_blocks, ntiles_KQ);

        // If ntiles_total % blocks_per_wave != 0 then some efficiency is lost due to tail effects.
        // Test whether parallel_blocks can be set to a higher value for better efficiency.
        const int blocks_per_wave = nsm * max_blocks_per_sm;
        int nwaves_best = 0;
        int efficiency_percent_best = 0;
        for (int parallel_blocks_test = parallel_blocks; parallel_blocks_test <= ntiles_KQ; ++parallel_blocks_test) {
            const int nblocks_total = ntiles_total * parallel_blocks_test;
            const int nwaves = (nblocks_total + blocks_per_wave - 1) / blocks_per_wave;
            const int efficiency_percent = 100 * nblocks_total / (nwaves*blocks_per_wave);

            // Stop trying configurations with more waves if we already have good efficiency to avoid excessive overhead.
            if (efficiency_percent_best >= 90 && nwaves > nwaves_best) {
                break;
            }

            if (efficiency_percent > efficiency_percent_best) {
                nwaves_best = nwaves;
                efficiency_percent_best = efficiency_percent;
                parallel_blocks = parallel_blocks_test;
            }
        }

        blocks_num.x = ntiles_x;
        blocks_num.y = parallel_blocks;
        blocks_num.z = Q->ne[2]*Q->ne[3];

        if (parallel_blocks > 1) {
            dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
            dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
        }
    }

    float scale         = 1.0f;
    float max_bias      = 0.0f;
    float logit_softcap = 0.0f;

    memcpy(&scale,         (const float *) KQV->op_params + 0, sizeof(float));
    memcpy(&max_bias,      (const float *) KQV->op_params + 1, sizeof(float));
    memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));

    if (logit_softcap != 0.0f) {
        scale /= logit_softcap;
    }

    const uint32_t n_head      = Q->ne[2];
    const uint32_t n_head_log2 = 1u << uint32_t(floorf(log2f(float(n_head))));

    const float m0 = powf(2.0f, -(max_bias       ) / n_head_log2);
    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);

    GGML_ASSERT(block_dim.x % warp_size == 0);
    fattn_kernel<<<blocks_num, block_dim, nbytes_shared, main_stream>>>(
        (const char *) Q->data,
        K_data,
        V_data,
        mask ? ((const char *) mask->data) : nullptr,
        sinks ? ((const char *) sinks->data) : nullptr,
        KV_max.ptr,
        !stream_k && parallel_blocks > 1 ? dst_tmp.ptr : (float *) KQV->data, dst_tmp_meta.ptr,
        scale, max_bias, m0, m1, n_head_log2, logit_softcap,
        Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], Q->nb[1], Q->nb[2], Q->nb[3],
        K->ne[0], K->ne[1], K->ne[2], K->ne[3], nb11, nb12, nb13,
        nb21, nb22, nb23,
        mask ? mask->ne[1] : 0, mask ? mask->ne[2] : 0, mask ? mask->ne[3] : 0,
        mask ? mask->nb[1] : 0, mask ? mask->nb[2] : 0, mask ? mask->nb[3] : 0
    );
    CUDA_CHECK(cudaGetLastError());

    if (stream_k) {
        if (ntiles_total % blocks_num.x != 0) { // Fixup is only needed if the SMs work on fractional tiles.
            const dim3 block_dim_combine(DV, 1, 1);
            const dim3 blocks_num_combine = {blocks_num.x, ncols1, ncols2};

            flash_attn_stream_k_fixup<DV, ncols1, ncols2>
                <<<blocks_num_combine, block_dim_combine, 0, main_stream>>>
                ((float *) KQV->data, dst_tmp_meta.ptr, Q->ne[1], Q->ne[2], Q->ne[3], K->ne[1]);
        }
    } else if (parallel_blocks > 1) {
        const dim3 block_dim_combine(DV, 1, 1);
        const dim3 blocks_num_combine(Q->ne[1], Q->ne[2], Q->ne[3]);
        const size_t nbytes_shared_combine = parallel_blocks*sizeof(float2);

        flash_attn_combine_results<DV>
            <<<blocks_num_combine, block_dim_combine, nbytes_shared_combine, main_stream>>>
            (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data, parallel_blocks);
    }
    CUDA_CHECK(cudaGetLastError());
}