File size: 18,889 Bytes
03d4b22
315df8c
03d4b22
8e133f7
 
 
 
 
 
3a7ca19
e1f825c
315df8c
e1f825c
315df8c
 
 
 
 
bf225d6
0c60f80
315df8c
 
 
 
 
 
 
fb8ae8b
10ac92f
 
 
 
 
 
 
fbc5f16
f328957
fb8ae8b
 
090ad80
 
 
 
 
 
b2d73a2
 
090ad80
 
10ac92f
fb8ae8b
 
 
e1f825c
 
 
 
 
 
fb8ae8b
315df8c
 
 
 
 
 
3a7ca19
315df8c
b2d73a2
 
315df8c
b2d73a2
 
 
47e02a8
bf225d6
 
315df8c
b2d73a2
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
bf225d6
315df8c
 
 
bf225d6
315df8c
 
 
 
 
 
 
 
 
 
 
e1f825c
 
 
 
 
 
 
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
090ad80
315df8c
 
 
 
 
 
 
 
 
 
 
 
090ad80
315df8c
 
 
 
 
 
 
 
 
 
 
 
090ad80
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efbb7be
315df8c
 
 
 
 
 
 
 
0c60f80
10ac92f
 
 
0c60f80
eb84e7e
 
 
315df8c
 
e1f825c
 
 
10ac92f
e1f825c
 
 
 
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ac92f
315df8c
fb8ae8b
 
 
 
 
e1f825c
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10ac92f
315df8c
 
 
 
 
 
 
 
 
bf225d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a7ca19
315df8c
 
b2d73a2
315df8c
 
3a7ca19
b2d73a2
315df8c
fbc5f16
12bb60d
 
 
891b1d1
 
 
b2d73a2
 
891b1d1
 
 
fbc5f16
 
315df8c
8e133f7
 
 
315df8c
3a7ca19
315df8c
 
3a7ca19
d4c0faf
 
f328957
507d30c
315df8c
 
 
 
fb8ae8b
 
 
 
315df8c
 
 
 
fb8ae8b
 
 
e1f825c
 
 
3a7ca19
fb8ae8b
 
3a7ca19
fb8ae8b
 
3a7ca19
fb8ae8b
315df8c
 
 
 
3a7ca19
fb8ae8b
 
3a7ca19
fb8ae8b
 
3a7ca19
fb8ae8b
315df8c
 
 
 
3a7ca19
fb8ae8b
 
3a7ca19
fb8ae8b
 
3a7ca19
fb8ae8b
315df8c
 
 
3a7ca19
fb8ae8b
 
3a7ca19
fb8ae8b
 
3a7ca19
fb8ae8b
315df8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#include "common.cuh"
#include "fattn-common.cuh"

// Currenlty llvm with the amdgcn target dose not support unrolling loops
// that contain a break that can not be resolved at compile time.
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wpass-failed"
#endif // __clang__
template<int D, int ncols, ggml_type type_K, ggml_type type_V, bool use_logit_softcap> // D == head size
#ifndef GGML_USE_HIP
__launch_bounds__(D, 1)
#endif // GGML_USE_HIP
static __global__ void flash_attn_vec_ext_f32(
        const char * __restrict__ Q,
        const char * __restrict__ K,
        const char * __restrict__ V,
        const char * __restrict__ mask,
        const char * __restrict__ sinks,
        const int  * __restrict__ KV_max,
        float      * __restrict__ dst,
        float2     * __restrict__ dst_meta,
        const float scale,
        const float max_bias,
        const float m0,
        const float m1,
        const uint32_t n_head_log2,
        const float logit_softcap,
        const int32_t ne00, const int32_t ne01, const int32_t ne02, const int32_t ne03,
                            const int32_t nb01, const int32_t nb02, const int32_t nb03,
        const int32_t ne10, const int32_t ne11, const int32_t ne12, const int32_t ne13,
                            const int32_t nb11, const int32_t nb12, const int64_t nb13,
                            const int32_t nb21, const int32_t nb22, const int64_t nb23,
                            const int32_t ne31, const int32_t ne32, const int32_t ne33,
                            const int32_t nb31, const int32_t nb32, const int64_t nb33) {
#ifdef FLASH_ATTN_AVAILABLE

    // Skip unused kernel variants for faster compilation:
    if (use_logit_softcap && !(D == 128 || D == 256)) {
        GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
        GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
        GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
        GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
        GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02);
        GGML_UNUSED(ne03); GGML_UNUSED(ne10); GGML_UNUSED(ne11);
        GGML_UNUSED(ne12); GGML_UNUSED(ne13); GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
        GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33); GGML_UNUSED(nb01); GGML_UNUSED(nb02);
        GGML_UNUSED(nb03); GGML_UNUSED(nb11); GGML_UNUSED(nb12);
        GGML_UNUSED(nb13); GGML_UNUSED(nb21); GGML_UNUSED(nb22);
        GGML_UNUSED(nb23);
        NO_DEVICE_CODE;
        return;
    }
#if !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)
    if (ncols > 1) {
        NO_DEVICE_CODE;
        return;
    }
#endif // !defined(GGML_USE_HIP) && !defined(GGML_USE_MUSA)

    //In this kernel Q, K, V are matrices while i, j, k are matrix indices.

    constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32<D>(type_K);
    constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
    constexpr dequantize_1_f32_t dequantize_1_v = get_dequantize_1_f32(type_V);

    const int ic0 = blockIdx.x * ncols; // Index of the Q/QKV column to work on.

    const int sequence = blockIdx.z / ne02;
    const int head = blockIdx.z - sequence*ne02;
    const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
    Q += nb03*sequence + nb02* head              + nb01*ic0;
    K += nb13*sequence + nb12*(head / gqa_ratio);
    V += nb23*sequence + nb22*(head / gqa_ratio);

    const half  * maskh  = (const half  *) (mask + nb33*(sequence % ne33) + nb31*ic0);
    const float * sinksf = (const float *) (sinks);

    const float slope = get_alibi_slope(max_bias, head, n_head_log2, m0, m1);

    static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
    constexpr int nwarps = D / WARP_SIZE;
    const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
    __builtin_assume(tid < D);

    __shared__ float KQ[ncols*D];
#pragma unroll
    for (int j = 0; j < ncols; ++j) {
        KQ[j*D + tid] = -FLT_MAX/2.0f;
    }

    float kqmax[ncols];
    float kqsum[ncols];
#pragma unroll
    for (int j = 0; j < ncols; ++j) {
        kqmax[j] = -FLT_MAX/2.0f;
        kqsum[j] = 0.0f;
    }

    __shared__ float kqmax_shared[ncols][WARP_SIZE];
    __shared__ float kqsum_shared[ncols][WARP_SIZE];
#pragma unroll
    for (int j = 0; j < ncols; ++j) {
        if (threadIdx.y == 0) {
            kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
            kqsum_shared[j][threadIdx.x] = 0.0f;
        }
    }

    __shared__ float maskf_shared[ncols*D];
#pragma unroll
    for (int j = 0; j < ncols; ++j) {
        maskf_shared[j*D + tid] = 0.0f;
    }

    __syncthreads();

    // Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
    float2  Q_f2[ncols][D/(2*WARP_SIZE)];
    int    Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)];
    float2  Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
    if (Q_q8_1) {
#pragma unroll
        for (int j0 = 0; j0 < ncols; j0 += nwarps) {
            const int j = j0 + threadIdx.y;

            if (j0 + nwarps > ncols && j >= ncols) {
                break;
            }

            // Reuse KQ as temporary storage for converting Q to q8_1:
            int    * tmp_q_i32 = (int    *) &KQ[j*D];
            float2 * tmp_q_ds  = (float2 *) (tmp_q_i32 + D/sizeof(int));

            // Set memory to zero if out of bounds:
            if (ncols > 2 && ic0 + j >= ne01) {
#pragma unroll
                for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
                    const int i = i0 + threadIdx.x;

                    tmp_q_i32[i] = 0;
                }
                if (threadIdx.x < D/QK8_1) {
                    tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
                }
                continue;
            }

            const float * Q_f = (const float *) (Q + j*nb01);
#pragma unroll
            for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
                quantize_q8_1_to_shared<float2>(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
            }
        }

        __syncthreads();

#pragma unroll
        for (int j = 0; j < ncols; ++j) {
            int    * tmp_q_i32 = (int    *) &KQ[j*D];
            float2 * tmp_q_ds  = (float2 *) (tmp_q_i32 + D/sizeof(int));

#pragma unroll
            for (int i0 = 0; i0 < int(D/sizeof(int)); i0 += WARP_SIZE) {
                const int i = i0 + threadIdx.x;

                Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
                Q_ds[j][i0/WARP_SIZE]  = tmp_q_ds[i/QI8_1];
            }
        }

        __syncthreads();
    } else {
#pragma unroll
        for (int j = 0; j < ncols; ++j) {
            const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
#pragma unroll
            for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
                const int i = i0 + threadIdx.x;

                Q_f2[j][i0/WARP_SIZE]    = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
                Q_f2[j][i0/WARP_SIZE].x *= scale;
                Q_f2[j][i0/WARP_SIZE].y *= scale;
            }
        }
    }

    float VKQ[ncols] = {0.0f};

    const int k_VKQ_max = KV_max ? KV_max[sequence*gridDim.x + blockIdx.x] : ne11;
    K     += blockIdx.y*D * nb11;
    V     += blockIdx.y*D * nb21;
    maskh += blockIdx.y*D;
    for (int k_VKQ_0 = blockIdx.y*D; k_VKQ_0 < k_VKQ_max; k_VKQ_0 += gridDim.y*D,
             // Increment pointers after each loop:
             K += gridDim.y*D*nb11, V += gridDim.y*D*nb21, maskh += gridDim.y*D) {

        // Calculate KQ tile and keep track of new maximum KQ values:

        if (mask) {
#pragma unroll
            for (int j = 0; j < ncols; ++j) {
                maskf_shared[j*D + tid] = slope*__half2float(maskh[j*ne11 + tid]);
            }
            __syncthreads();
        }

        float kqmax_new_arr[ncols];
#pragma unroll
        for (int j = 0; j < ncols; ++j) {
            kqmax_new_arr[j] = kqmax[j];
        }

#pragma unroll
        for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
            const int i_KQ = i_KQ_0 + threadIdx.y;

            if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
                break;
            }

#pragma unroll
            for (int j = 0; j < ncols; ++j) {
                float sum = vec_dot_KQ(K + i_KQ*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
                sum = warp_reduce_sum(sum);

                if (use_logit_softcap) {
                    sum = logit_softcap*tanhf(sum);
                }

                sum += maskf_shared[j*D + i_KQ];

                kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);

                if (threadIdx.x == 0) {
                    KQ[j*D + i_KQ] = sum;
                }
            }
        }

#pragma unroll
        for (int j = 0; j < ncols; ++j) {
            float kqmax_new_j = kqmax_new_arr[j];

            if (threadIdx.x == 0) {
                kqmax_shared[j][threadIdx.y] = kqmax_new_j;
            }
        }

        __syncthreads();

#pragma unroll
        for (int j = 0; j < ncols; ++j) {
            float kqmax_new_j = kqmax_shared[j][threadIdx.x];
            kqmax_new_j = warp_reduce_max(kqmax_new_j);

            const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
            kqmax[j] = kqmax_new_j;

            const float val = expf(KQ[j*D + tid] - kqmax[j]);
            kqsum[j] = kqsum[j]*KQ_max_scale + val;
            KQ[j*D + tid] = val;

            VKQ[j] *= KQ_max_scale;
        }

        __syncthreads();

#pragma unroll
        for (int k = 0; k < D; ++k) {
            if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
                break;
            }

            const float V_ki = dequantize_1_v(V + k*nb21, tid);
#pragma unroll
            for (int j = 0; j < ncols; ++j) {
                VKQ[j] += V_ki*KQ[j*D + k];
            }
        }

        __syncthreads();
    }

    if (sinksf && blockIdx.y == 0) {
        const float sink = sinksf[head];

#pragma unroll
        for (int j = 0; j < ncols; ++j) {
            if (threadIdx.x == 0) {
                kqmax_shared[j][threadIdx.y] = fmaxf(kqmax[j], sink);
            }
        }

        __syncthreads();

#pragma unroll
        for (int j = 0; j < ncols; ++j) {
            float kqmax_new_j = kqmax_shared[j][threadIdx.x];
            kqmax_new_j = warp_reduce_max(kqmax_new_j);

            const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
            kqmax[j] = kqmax_new_j;

            const float val = expf(sink - kqmax[j]);
            kqsum[j] = kqsum[j]*KQ_max_scale;

            if (tid == 0) {
                kqsum[j] += val;
            }

            VKQ[j] *= KQ_max_scale;
        }

        __syncthreads();
    }

#pragma unroll
    for (int j = 0; j < ncols; ++j) {
        kqsum[j] = warp_reduce_sum(kqsum[j]);
        if (threadIdx.x == 0) {
            kqsum_shared[j][threadIdx.y] = kqsum[j];
        }
    }

    __syncthreads();

#pragma unroll
    for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
        if (ncols > 2 && ic0 + j_VKQ >= ne01) {
            break;
        }

        kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
        kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);

        float dst_val = VKQ[j_VKQ];
        if (gridDim.y == 1) {
            dst_val /= kqsum[j_VKQ];
        }
        dst[(((sequence*ne01 + ic0 + j_VKQ)*ne02 + head)*gridDim.y + blockIdx.y)*D + tid] = dst_val;
    }

    if (gridDim.y != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
        dst_meta[((sequence*ne01 + ic0 + tid)*ne02 + head)*gridDim.y + blockIdx.y] = make_float2(kqmax[tid], kqsum[tid]);
    }
#else
    GGML_UNUSED(Q); GGML_UNUSED(K); GGML_UNUSED(V); GGML_UNUSED(mask);
    GGML_UNUSED(dst); GGML_UNUSED(dst_meta); GGML_UNUSED(scale);
    GGML_UNUSED(max_bias); GGML_UNUSED(m0); GGML_UNUSED(m1);
    GGML_UNUSED(n_head_log2); GGML_UNUSED(logit_softcap);
    GGML_UNUSED(ne00); GGML_UNUSED(ne01); GGML_UNUSED(ne02); GGML_UNUSED(ne03);
    GGML_UNUSED(ne10); GGML_UNUSED(ne11); GGML_UNUSED(ne12); GGML_UNUSED(ne13);
    GGML_UNUSED(ne31); GGML_UNUSED(ne32); GGML_UNUSED(ne33);
    GGML_UNUSED(nb31); GGML_UNUSED(nb32); GGML_UNUSED(nb33);
    GGML_UNUSED(nb01); GGML_UNUSED(nb02); GGML_UNUSED(nb03);
    GGML_UNUSED(nb11); GGML_UNUSED(nb12); GGML_UNUSED(nb13);
    GGML_UNUSED(nb21); GGML_UNUSED(nb22); GGML_UNUSED(nb23);
    NO_DEVICE_CODE;
#endif // FLASH_ATTN_AVAILABLE
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif // __clang__

template <int D, int cols_per_block, ggml_type type_K, ggml_type type_V, bool use_logit_softcap>
void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    constexpr int nwarps = D/WARP_SIZE;
    fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, type_K, type_V, use_logit_softcap>;
    constexpr bool need_f16_K = D != 128;
    constexpr bool need_f16_V = D != 128 && D != 64;
    constexpr size_t nbytes_shared = 0;
    launch_fattn<D, cols_per_block, 1>(ctx, dst, fattn_kernel, nwarps, nbytes_shared, D, need_f16_K, need_f16_V, false);
}

template <int D, ggml_type type_K, ggml_type type_V>
void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
    const ggml_tensor * KQV = dst;
    const ggml_tensor * Q   = dst->src[0];
    const ggml_tensor * K   = dst->src[1];
    const ggml_tensor * V   = dst->src[2];

    GGML_ASSERT(K->type == type_K);
    GGML_ASSERT(V->type == type_V);

    float logit_softcap;
    memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float));

    const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;

    if (Q->ne[1] == 1 || GGML_CUDA_CC_IS_NVIDIA(cc)) {
        constexpr int cols_per_block = 1;
        if (logit_softcap == 0.0f) {
            constexpr bool use_logit_softcap = false;
            ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
        } else {
            constexpr bool use_logit_softcap = true;
            ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
        }
        return;
    }

    if (Q->ne[1] == 2) {
        constexpr int cols_per_block = 2;
        if (logit_softcap == 0.0f) {
            constexpr bool use_logit_softcap = false;
            ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
        } else {
            constexpr bool use_logit_softcap = true;
            ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
        }
        return;
    }

    if (Q->ne[1] <= 4) {
        constexpr int cols_per_block = 4;
        if (logit_softcap == 0.0f) {
            constexpr bool use_logit_softcap = false;
            ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
        } else {
            constexpr bool use_logit_softcap = true;
            ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
        }
        return;
    }

    constexpr int cols_per_block = 8;
    if (logit_softcap == 0.0f) {
        constexpr bool use_logit_softcap = false;
        ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
    } else {
        constexpr bool use_logit_softcap = true;
        ggml_cuda_flash_attn_ext_vec_f32_case_impl<D, cols_per_block, type_K, type_V, use_logit_softcap>(ctx, dst);
    }
}

#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V)                          \
    template void ggml_cuda_flash_attn_ext_vec_f32_case                     \
    <D, type_K, type_V>(ggml_backend_cuda_context & ctx, ggml_tensor * dst) \

extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);

extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16,  GGML_TYPE_Q4_0);

extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16,  GGML_TYPE_Q4_1);

extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16,  GGML_TYPE_Q5_0);

extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16,  GGML_TYPE_Q5_1);

extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16,  GGML_TYPE_Q8_0);

extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16,  GGML_TYPE_F16);

extern DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);