File size: 19,406 Bytes
5dbc515 f73992a 5dbc515 f73992a 5dbc515 f73992a 5dbc515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
#!/usr/bin/env python3
"""
HuggingFace Space Demo for TextSyncMimi
Speech Editing with Token-Level Embedding Swapping
This demo loads the model from HuggingFace Hub and allows:
- Generating speech with different voices using OpenAI TTS
- Swapping speech embeddings at specific token positions
- Real-time speech editing
Prerequisites:
- Set OPENAI_API_KEY in Space secrets
- Model will be loaded from HuggingFace Hub
"""
import os
import json
import tempfile
import argparse
from typing import List, Tuple, Optional
from pathlib import Path
import numpy as np
import torch
import torch.nn as nn
import soundfile as sf
import gradio as gr
from openai import OpenAI
from transformers import (
AutoModel,
AutoFeatureExtractor,
AutoTokenizer,
MimiModel,
)
# Import spaces for GPU support
try:
import spaces
GPU_AVAILABLE = True
except ImportError:
GPU_AVAILABLE = False
# Create dummy decorator if spaces not available
class spaces:
@staticmethod
def GPU(func):
return func
# Constants
SAMPLE_RATE = 24000
FRAME_RATE = 12.5
TTS_VOICES = ["alloy", "ash", "coral", "echo", "fable", "onyx", "nova", "sage", "shimmer", "verse"]
MAX_Z_TOKENS = 50
END_TOKEN_THRESHOLD = 0.5
# Global variables
model = None
mimi_model = None
tokenizer = None
feature_extractor = None
device = None
openai_client = None
def load_audio_to_inputs(feature_extractor, audio_path: str, sample_rate: int) -> torch.Tensor:
"""Load audio file and convert to model inputs."""
import librosa
audio, sr = librosa.load(audio_path, sr=sample_rate, mono=True)
audio_inputs = feature_extractor(raw_audio=audio, return_tensors="pt", sampling_rate=sample_rate)
return audio_inputs.input_values
def initialize_models(model_id: str, tokenizer_id: str = "meta-llama/Llama-3.1-8B-Instruct", hf_token: Optional[str] = None):
"""Initialize all models from HuggingFace Hub."""
global model, mimi_model, tokenizer, feature_extractor, device, openai_client
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
print(f"Loading TextSyncMimi model from {model_id}...")
model = AutoModel.from_pretrained(
model_id,
trust_remote_code=True,
token=hf_token
)
model.to(device)
model.eval()
# Get mimi_model_id from config
mimi_model_id = model.config.mimi_model_id if hasattr(model.config, 'mimi_model_id') else "kyutai/mimi"
print("Loading Mimi model...")
mimi_model = MimiModel.from_pretrained(mimi_model_id, token=hf_token)
mimi_model.to(device)
mimi_model.eval()
print(f"Loading tokenizer from {tokenizer_id}...")
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, token=hf_token)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Loading feature extractor...")
feature_extractor = AutoFeatureExtractor.from_pretrained(mimi_model_id, token=hf_token)
print("Initializing OpenAI client...")
openai_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
print("β
All models loaded successfully!")
@torch.no_grad()
def compute_cross_attention_s(
model,
text_embeddings: torch.Tensor,
input_values: torch.Tensor,
device: str
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Compute projected text embeddings and cross-attended speech embeddings."""
audio_attention_mask = torch.ones(1, input_values.shape[-1], dtype=torch.bool, device=device)
text_attention_mask = torch.ones(1, text_embeddings.shape[1], dtype=torch.bool, device=device)
# Encode speech
speech_embeddings = model.encode_audio_to_representation(
input_values.to(device),
audio_attention_mask=audio_attention_mask,
).transpose(1, 2)
# Project text
text_proj = model.text_proj(text_embeddings.to(device))
# Build attention masks
batch_size, text_seq_len = text_proj.shape[:2]
causal_mask = torch.tril(torch.ones(text_seq_len, text_seq_len, device=device, dtype=text_proj.dtype))
causal_mask = causal_mask.view(1, 1, text_seq_len, text_seq_len).expand(batch_size, -1, -1, -1)
pad_mask = text_attention_mask.view(batch_size, 1, 1, text_seq_len)
formatted_text_attention_mask = torch.where((causal_mask * pad_mask).bool(), 0.0, float("-inf"))
speech_seq_len = speech_embeddings.shape[1]
speech_mask = torch.ones(batch_size, speech_seq_len, dtype=torch.bool, device=device)
formatted_speech_attention_mask = torch.where(
speech_mask.view(batch_size, 1, 1, speech_seq_len), 0.0, float("-inf")
)
# Cross attention
cross_out = model.cross_attention_transformer(
hidden_states=text_proj,
encoder_hidden_states=speech_embeddings,
attention_mask=formatted_text_attention_mask,
encoder_attention_mask=formatted_speech_attention_mask,
alignment_chunk_sizes=None,
).last_hidden_state
return text_proj, cross_out, text_attention_mask
@torch.no_grad()
def ar_generate_and_decode(
model,
mimi_model,
text_proj: torch.Tensor,
s_tokens: torch.Tensor,
text_attention_mask: torch.Tensor,
max_z_tokens: int,
end_token_threshold: float,
device: str
) -> np.ndarray:
"""Generate audio autoregressively and decode to waveform."""
batch_size, text_seq_len = text_proj.shape[:2]
text_speech_latent_emb = model.text_speech_latent_embed(torch.zeros(1, dtype=torch.long, device=device))
time_speech_start_emb = model.time_speech_start_embed(torch.zeros(1, dtype=torch.long, device=device))
time_speech_end_emb = model.time_speech_end_embed(torch.zeros(1, dtype=torch.long, device=device))
generated_z_tokens: List[torch.Tensor] = []
for b in range(batch_size):
if text_attention_mask is not None:
valid_text_len = int(text_attention_mask[b].sum().item())
else:
valid_text_len = text_seq_len
sequence: List[torch.Tensor] = [text_speech_latent_emb]
for i in range(valid_text_len):
t_i = text_proj[b, i:i+1]
s_i = s_tokens[b, i:i+1]
sequence.extend([t_i, s_i])
sequence.append(time_speech_start_emb)
z_count = 0
while z_count < max_z_tokens:
current_sequence = torch.cat(sequence, dim=0).unsqueeze(0)
ar_attention_mask = torch.ones(1, current_sequence.shape[1], dtype=torch.bool, device=device)
ar_outputs = model.ar_transformer(
hidden_states=current_sequence,
attention_mask=ar_attention_mask,
)
last_prediction = ar_outputs.last_hidden_state[0, -1:, :]
end_token_logit = model.end_token_classifier(last_prediction).squeeze(-1)
end_token_prob = torch.sigmoid(end_token_logit).item()
if end_token_prob >= end_token_threshold:
break
sequence.append(last_prediction)
generated_z_tokens.append(last_prediction.squeeze(0))
z_count += 1
sequence.append(time_speech_end_emb)
# Decode z tokens to audio
if len(generated_z_tokens) == 0:
audio_tensor = torch.zeros(1, 1, 1000, device=device)
else:
z_tokens_batch = torch.stack(generated_z_tokens, dim=0).unsqueeze(0)
embeddings_bct = z_tokens_batch.transpose(1, 2)
embeddings_upsampled = mimi_model.upsample(embeddings_bct)
decoder_outputs = mimi_model.decoder_transformer(embeddings_upsampled.transpose(1, 2), return_dict=True)
embeddings_after_dec = decoder_outputs.last_hidden_state.transpose(1, 2)
audio_tensor = mimi_model.decoder(embeddings_after_dec)
audio_numpy = audio_tensor.squeeze().detach().cpu().numpy()
if np.isnan(audio_numpy).any() or np.isinf(audio_numpy).any():
audio_numpy = np.nan_to_num(audio_numpy)
if audio_numpy.ndim > 1:
audio_numpy = audio_numpy.flatten()
return audio_numpy
def generate_tts_audio(text: str, voice: str, instructions: str = None) -> str:
"""Generate TTS audio using OpenAI and return the file path."""
if not openai_client:
raise RuntimeError("OpenAI client not initialized")
if instructions and instructions.strip():
response = openai_client.audio.speech.create(
model="gpt-4o-mini-tts",
voice=voice,
input=text,
instructions=instructions.strip()
)
else:
response = openai_client.audio.speech.create(
model="tts-1",
voice=voice,
input=text
)
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as temp_file:
response.stream_to_file(temp_file.name)
return temp_file.name
@spaces.GPU
def process_inputs(transcript_text: str, voice1: str, voice2: str, instructions1: str = "", instructions2: str = ""):
"""Process inputs and generate audio."""
if not all([model, mimi_model, tokenizer, feature_extractor, openai_client]):
return "Please initialize models first!", None, None, None, None, None, None, None
if not transcript_text.strip():
return "Please provide a transcript!", None, None, None, None, None, None, None
if not voice1 or not voice2:
return "Please select voices for both audio samples!", None, None, None, None, None, None, None
# Tokenize
tokens = tokenizer(transcript_text.strip(), return_tensors="pt", add_special_tokens=False)
text_token_ids_cpu = tokens.input_ids.squeeze(0).tolist()
text_token_strs = tokenizer.convert_ids_to_tokens(text_token_ids_cpu)
text_token_ids = tokens.input_ids.to(device)
token_display = ""
for i, tok in enumerate(text_token_strs):
token_display += f"Token {i}: {tok}\n"
# Generate TTS audio
print(f"Generating TTS audio with voice '{voice1}'...")
audio1_path = generate_tts_audio(transcript_text.strip(), voice1, instructions1)
print(f"Generating TTS audio with voice '{voice2}'...")
audio2_path = generate_tts_audio(transcript_text.strip(), voice2, instructions2)
# Load audio
input_values_utt1 = load_audio_to_inputs(feature_extractor, audio1_path, SAMPLE_RATE)
input_values_utt2 = load_audio_to_inputs(feature_extractor, audio2_path, SAMPLE_RATE)
# Get text embeddings using model's built-in text_token_embedding
with torch.no_grad():
text_embeddings = model.text_token_embedding(text_token_ids)
# Compute cross-attention embeddings
t1_proj, s1_cross, text_attention_mask = compute_cross_attention_s(
model, text_embeddings, input_values_utt1, device
)
_, s2_cross, _ = compute_cross_attention_s(
model, text_embeddings, input_values_utt2, device
)
# Generate baseline audio
baseline_audio = ar_generate_and_decode(
model=model,
mimi_model=mimi_model,
text_proj=t1_proj,
s_tokens=s1_cross,
text_attention_mask=text_attention_mask,
max_z_tokens=MAX_Z_TOKENS,
end_token_threshold=END_TOKEN_THRESHOLD,
device=device,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
sf.write(f.name, baseline_audio, SAMPLE_RATE)
baseline_path = f.name
return (
"Processing completed successfully!",
token_display,
audio1_path,
audio2_path,
baseline_path,
json.dumps({
"t1_proj": t1_proj.cpu().numpy().tolist(),
"s1_cross": s1_cross.cpu().numpy().tolist(),
"s2_cross": s2_cross.cpu().numpy().tolist(),
"text_attention_mask": text_attention_mask.cpu().numpy().tolist(),
"num_tokens": len(text_token_strs)
}),
audio1_path,
audio2_path
)
@spaces.GPU
def swap_embeddings(embeddings_json: str, swap_indices: str):
"""Perform embedding swap at specified token indices."""
if not embeddings_json:
return "Please process inputs first!", None
if not swap_indices.strip():
return "Please specify token indices to swap (e.g., 0,2,5)!", None
# Parse stored embeddings
embeddings_data = json.loads(embeddings_json)
t1_proj = torch.tensor(embeddings_data["t1_proj"]).to(device)
s1_cross = torch.tensor(embeddings_data["s1_cross"]).to(device)
s2_cross = torch.tensor(embeddings_data["s2_cross"]).to(device)
text_attention_mask = torch.tensor(embeddings_data["text_attention_mask"]).to(device)
num_tokens = embeddings_data["num_tokens"]
# Parse indices
parts = [p.strip() for p in swap_indices.split(",")]
parsed = [int(p) for p in parts if p.isdigit()]
if len(parsed) == 0:
return "No valid indices provided! Use format: 0,2,5", None
valid_indices = [i for i in parsed if 0 <= i < num_tokens]
if len(valid_indices) == 0:
return f"All indices out of range! Valid range: 0-{num_tokens-1}", None
# Perform swap
s_swapped = s1_cross.clone()
for idx in valid_indices:
s_swapped[:, idx:idx+1, :] = s2_cross[:, idx:idx+1, :]
# Generate swapped audio
swapped_audio = ar_generate_and_decode(
model=model,
mimi_model=mimi_model,
text_proj=t1_proj,
s_tokens=s_swapped,
text_attention_mask=text_attention_mask,
max_z_tokens=MAX_Z_TOKENS,
end_token_threshold=END_TOKEN_THRESHOLD,
device=device,
)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as f:
sf.write(f.name, swapped_audio, SAMPLE_RATE)
swapped_path = f.name
return f"Successfully swapped embeddings at token indices: {valid_indices}", swapped_path
def create_gradio_interface():
"""Create the Gradio interface."""
with gr.Blocks(title="TextSyncMimi Demo") as interface:
gr.Markdown("# TextSyncMimi - Standalone Demo")
gr.Markdown("Generate two voice renditions using OpenAI TTS, then swap speech embeddings at token positions.")
gr.Markdown("**This demo uses only the self-contained TextSyncMimi-v1 model code.**")
with gr.Accordion("Style Instruction Examples", open=False):
gr.Markdown("""
**Example Instructions:**
- *Emotional:* "Speak with excitement and joy", "Sound sad and melancholy"
- *Pace:* "Speak slowly and deliberately", "Talk quickly and energetically"
- *Character:* "Sound like a wise professor", "Speak like an excited child"
""")
with gr.Row():
with gr.Column():
gr.Markdown("## Text-to-Speech Configuration")
transcript_text = gr.Textbox(
label="Transcript Text",
placeholder="Enter text to synthesize...",
lines=3
)
with gr.Row():
voice1 = gr.Dropdown(
choices=TTS_VOICES,
label="Voice 1",
value="alloy"
)
voice2 = gr.Dropdown(
choices=TTS_VOICES,
label="Voice 2",
value="echo"
)
instructions1 = gr.Textbox(
label="Style Instructions for Voice 1",
placeholder="e.g., Speak slowly and calmly",
lines=2
)
instructions2 = gr.Textbox(
label="Style Instructions for Voice 2",
placeholder="e.g., Speak quickly with excitement",
lines=2
)
process_btn = gr.Button("Generate & Process", variant="primary")
process_status = gr.Textbox(label="Status", interactive=False)
with gr.Column():
gr.Markdown("## Tokenization")
tokens_display = gr.Textbox(
label="Tokens",
lines=16,
interactive=False
)
with gr.Row():
with gr.Column():
gr.Markdown("## Generated TTS Audio")
generated_audio1 = gr.Audio(label="Generated Audio 1")
generated_audio2 = gr.Audio(label="Generated Audio 2")
with gr.Column():
gr.Markdown("## Model Output")
baseline_audio = gr.Audio(label="Baseline Reconstruction")
gr.Markdown("### Embedding Swap")
swap_indices_input = gr.Textbox(
label="Token Indices to Swap",
placeholder="e.g., 0,2,5"
)
swap_btn = gr.Button("Perform Swap")
swap_status = gr.Textbox(label="Swap Status", interactive=False)
swapped_audio = gr.Audio(label="Swapped Result")
# Hidden states
embeddings_state = gr.State()
audio1_state = gr.State()
audio2_state = gr.State()
# Event handlers
process_btn.click(
fn=process_inputs,
inputs=[transcript_text, voice1, voice2, instructions1, instructions2],
outputs=[process_status, tokens_display, generated_audio1, generated_audio2,
baseline_audio, embeddings_state, audio1_state, audio2_state]
)
swap_btn.click(
fn=swap_embeddings,
inputs=[embeddings_state, swap_indices_input],
outputs=[swap_status, swapped_audio]
)
return interface
def main():
"""Main function."""
parser = argparse.ArgumentParser(description="HuggingFace Space Demo for TextSyncMimi")
parser.add_argument(
"--model_id",
type=str,
default="potsawee/TextSyncMimi-v1",
help="HuggingFace model ID"
)
parser.add_argument(
"--tokenizer_id",
type=str,
default="meta-llama/Llama-3.1-8B-Instruct",
help="HuggingFace tokenizer ID"
)
parser.add_argument(
"--hf_token",
type=str,
default=None,
help="Hugging Face token (or set HF_TOKEN env var)"
)
parser.add_argument(
"--port",
type=int,
default=7860,
help="Port for Gradio app"
)
parser.add_argument(
"--share",
action="store_true",
help="Create public share link"
)
args = parser.parse_args()
# Check OpenAI API key
if not os.getenv("OPENAI_API_KEY"):
print("β Error: OPENAI_API_KEY environment variable is required!")
print("Set it: export OPENAI_API_KEY=your_key_here")
return
# Get HF token
hf_token = args.hf_token or os.getenv("HF_TOKEN")
# Initialize models
print(f"π Initializing TextSyncMimi from HuggingFace Hub: {args.model_id}...")
initialize_models(args.model_id, args.tokenizer_id, hf_token)
print("π Launching Gradio interface...")
# Launch
interface = create_gradio_interface()
interface.launch(server_port=args.port, share=args.share)
if __name__ == "__main__":
main()
|