RADAR-demo / loaders /dataloader.py
arcanoXIII's picture
Upload 13 files
7e08bf1 verified
import os
import torch
from PIL import Image
from torchvision import transforms
import torchvision
import json
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
class SquarePad:
def __call__(self, image):
max_wh = max(image.size)
p_left, p_top = [(max_wh - s) // 2 for s in image.size]
p_right, p_bottom = [max_wh - (s+pad) for s, pad in zip(image.size, [p_left, p_top])]
padding = (p_left, p_top, p_right, p_bottom)
return transforms.functional.pad(image, padding, padding_mode = 'edge')
class BaseDataset(Dataset):
def __init__(self, img_size, dataset_path, inpainter):
self.IMAGENET_MEAN = [0.485, 0.456, 0.406]
self.IMAGENET_STD = [0.229, 0.224, 0.225]
self.img_size = img_size
self.dataset_path = dataset_path
self.inpainter = inpainter
self.json_path = os.path.join(dataset_path, 'DFDS_V2/DFDS_V2.0_2Percent.json')
# self.json_path = os.path.join(dataset_path, 'DFDS_V2.0_2Percent.json')
self.data = self.load_json()
self.data_train = self.data[0:500]
self.rgb_transform = transforms.Compose([
SquarePad(),
transforms.Resize((img_size, img_size), interpolation = transforms.InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean = self.IMAGENET_MEAN, std = self.IMAGENET_STD)
])
def load_json(self):
with open(self.json_path, 'r') as file:
data = json.load(file)
return data
class TrainDataset(BaseDataset):
def __init__(self, img_size, dataset_path):
super().__init__(img_size = img_size, dataset_path = dataset_path, inpainter = None)
self.gt_transform = transforms.Compose([
SquarePad(),
transforms.Resize((img_size, img_size), interpolation = transforms.InterpolationMode.BICUBIC),
transforms.ToTensor()]
)
self.img_paths_pos, self.img_paths_neg, self.mask_paths_neg = self.load_dataset()
def load_dataset(self):
positive_imgs = [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data_train]
negative_imgs = [os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD1_Inpaint'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD1.5_Inpaint'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD2_Inpaint'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SDXL_Inpaint'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD3_Inpaint'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['inpainters']['SD3.5_Inpaint'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['inpainters']['kadinsky2.2_Inpaint'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['inpainters']['kadinsky3.1_Inpaint'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['inpainters']['FLUX_SHNELL_Inpaint'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['inpainters']['FLUX_DEV_FILL'].lstrip('/')) for data in self.data_train]
negative_masks = [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train] + \
[os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data_train]
return positive_imgs, negative_imgs, negative_masks
def __len__(self):
return len(self.data_train) * 3
def __getitem__(self, idx):
img_path_pos, img_path_neg, gt_neg = self.img_paths_pos[idx], self.img_paths_neg[idx], self.mask_paths_neg[idx]
img_pos = Image.open(img_path_pos.replace('/Open_V7/','')).convert('RGB')
img_neg = Image.open(img_path_neg.replace('/Open_V7/','')).convert('RGB')
rgb_pos = self.rgb_transform(img_pos)
rgb_neg = self.rgb_transform(img_neg)
gt_pos = torch.zeros([1, img_pos.size[1], img_pos.size[0]])
gt_pos = torchvision.transforms.functional.to_pil_image(gt_pos)
gt_pos = self.gt_transform(gt_pos)
gt_neg = Image.open(gt_neg.replace('/Open_V7/','')).convert('L')
gt_neg = self.gt_transform(gt_neg)
gt_neg = torch.where(gt_neg > 0.5, 1., .0)
return rgb_pos, gt_pos, rgb_neg, gt_neg
class TestDataset(BaseDataset):
def __init__(self, img_size, dataset_path, inpainter):
super().__init__(img_size = img_size, dataset_path = dataset_path, inpainter = inpainter)
self.gt_transform = transforms.Compose([
transforms.ToTensor()])
self.img_paths, self.mask_paths, self.labels = self.load_dataset()
def load_dataset(self):
positive_imgs = [os.path.join(self.dataset_path, data['base_image_location'].lstrip('/')) for data in self.data[500:600]]
positive_masks = [None for data in self.data[500:600]]
negative_imgs = [os.path.join(self.dataset_path, data['masks'][0]['inpainters'][self.inpainter].lstrip('/')) for data in self.data[600:700]]
negative_masks = [os.path.join(self.dataset_path, data['masks'][0]['edited_mask_location'].lstrip('/')) for data in self.data[600:700]]
labels = [0.0 for data in self.data[500:600]] + [1.0 for data in self.data[600:700]]
return positive_imgs + negative_imgs, positive_masks + negative_masks, labels
def __len__(self):
return len(self.data[500:700])
def __getitem__(self, idx):
img_path, gt, label = self.img_paths[idx], self.mask_paths[idx], self.labels[idx]
img = Image.open(img_path.replace('/Open_V7/','').replace('data/', 'data/DFDS_V2/')).convert('RGB')
rgb = self.rgb_transform(img)
if gt == None:
gt = torch.zeros(
[1, img.size[1], img.size[0]])
else:
gt = Image.open(gt.replace('/Open_V7/','').replace('data/', 'data/DFDS_V2/')).convert('L')
gt = self.gt_transform(gt)
gt = torch.where(gt > 0.5, 1., .0)
return rgb, label, gt, img_path
def get_data_loader(split, img_size, batch_size, dataset_path, inpainter = None):
if split == 'train':
dataset = TrainDataset(img_size, dataset_path)
data_loader = DataLoader(dataset = dataset, batch_size = batch_size, shuffle = True, num_workers = 8, drop_last = True, pin_memory = False)
elif split == 'test':
dataset = TestDataset(img_size, dataset_path, inpainter)
data_loader = DataLoader(dataset = dataset, batch_size = batch_size, shuffle = False, num_workers = 8, drop_last = False, pin_memory = False)
return data_loader