Spaces:
Sleeping
Sleeping
File size: 8,854 Bytes
398ce88 52dae7d 398ce88 ae6b1d3 398ce88 ae6b1d3 398ce88 ae6b1d3 398ce88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import torch
import numpy as np
from PIL import Image
import time
from model import Generator, Discriminator
# Configuration
LATENT_DIM = 100
IMG_SHAPE = (1, 28, 28)
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load the trained models
generator = Generator(latent_dim=LATENT_DIM, img_shape=IMG_SHAPE).to(DEVICE)
generator.load_state_dict(torch.load('generator.pth', map_location=DEVICE))
generator.eval()
discriminator = Discriminator(img_shape=IMG_SHAPE).to(DEVICE)
discriminator.load_state_dict(torch.load('discriminator.pth', map_location=DEVICE))
discriminator.eval()
def generate_digits(num_images, seed, show_confidence):
"""Generate digits and return with optional confidence scores"""
start_time = time.time()
with torch.no_grad():
# Set seed for reproducibility if provided
if seed != 0:
torch.manual_seed(seed)
np.random.seed(int(seed))
# Generate random noise
num_images = int(num_images)
z = torch.randn(num_images, LATENT_DIM).to(DEVICE)
# Generate images
generated_imgs = generator(z)
# Get discriminator confidence
confidence_scores = discriminator(generated_imgs)
avg_confidence = confidence_scores.mean().item() * 100
# Convert to numpy and denormalize
generated_imgs = generated_imgs.cpu().numpy()
generated_imgs = ((generated_imgs + 1) / 2 * 255).astype(np.uint8)
# Create grid
grid_size = int(np.ceil(np.sqrt(num_images)))
grid_img = Image.new('L', (280 * grid_size, 280 * grid_size), color=255)
for idx in range(num_images):
img_pil = Image.fromarray(generated_imgs[idx][0], mode='L')
img_pil = img_pil.resize((280, 280), Image.NEAREST)
row = idx // grid_size
col = idx % grid_size
grid_img.paste(img_pil, (col * 280, row * 280))
generation_time = time.time() - start_time
# Build info text
info_text = f"Generated {num_images} digit(s) in {generation_time:.3f}s"
if show_confidence:
info_text += f"\nDiscriminator Confidence: {avg_confidence:.1f}% (how 'real' the digits appear)"
return grid_img, info_text
def create_comparison_grid():
"""Create a comparison showing training progress"""
# Create sample images at different seeds
seeds = [42, 123, 456, 789]
images = []
with torch.no_grad():
for seed in seeds:
torch.manual_seed(seed)
z = torch.randn(1, LATENT_DIM).to(DEVICE)
img = generator(z)
img = ((img[0, 0].cpu().numpy() + 1) / 2 * 255).astype(np.uint8)
img_pil = Image.fromarray(img, mode='L')
img_pil = img_pil.resize((140, 140), Image.NEAREST)
images.append(img_pil)
# Create grid
grid = Image.new('L', (280, 280), color=255)
for idx, img in enumerate(images):
row = idx // 2
col = idx % 2
grid.paste(img, (col * 140, row * 140))
return grid
# Create interface
with gr.Blocks(title="MNIST GAN Generator", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# Handwritten Digit Generator
### Using Generative Adversarial Networks (GAN)
### About This Project
This GAN was trained to generate handwritten digits by learning from the MNIST dataset.
The generator creates images from random noise, while the discriminator learns to distinguish real from fake images.
Through adversarial training, the generator improves until it produces realistic digits.
**Created by Rohan Jain** | [LinkedIn](https://www.linkedin.com/in/jaroh23/) | [GitHub](https://github.com/rohanjain2312)
"""
)
with gr.Tabs():
# Tab 1: Generate Digits
with gr.TabItem("Generate Digits"):
gr.Markdown("Generate new handwritten digits using the trained GAN model.")
with gr.Row():
with gr.Column(scale=1):
num_images = gr.Slider(
minimum=1,
maximum=16,
value=4,
step=1,
label="Number of Digits",
info="Generate 1-16 digits at once"
)
seed = gr.Number(
value=0,
label="Random Seed",
info="Use 0 for random, or set a number for reproducible results"
)
show_confidence = gr.Checkbox(
value=True,
label="Show Discriminator Confidence",
info="Display how 'real' the generator fooled the discriminator"
)
generate_btn = gr.Button("Generate", variant="primary", size="lg")
with gr.Column(scale=2):
output_image = gr.Image(label="Generated Digits", type="pil")
output_info = gr.Textbox(label="Generation Info", lines=2)
generate_btn.click(
fn=generate_digits,
inputs=[num_images, seed, show_confidence],
outputs=[output_image, output_info]
)
gr.Markdown("### Quick Examples")
gr.Examples(
examples=[
[4, 42, True],
[9, 123, True],
[16, 456, False],
],
inputs=[num_images, seed, show_confidence],
outputs=[output_image, output_info],
fn=generate_digits,
cache_examples=True,
)
# Tab 2: Model Information
with gr.TabItem("Model Details"):
gr.Markdown("### Training Loss Curves")
gr.Image(value="loss_curve.png", label="Generator and Discriminator Loss During Training")
gr.Markdown(
"""
**Loss Analysis:**
- The discriminator loss (orange) stabilizes around 0.3-0.4, indicating it effectively distinguishes real from fake
- The generator loss (blue) shows typical adversarial dynamics, settling around 1.5-2.0
- The fluctuating losses indicate healthy adversarial balance between the two networks
"""
)
with gr.Row():
with gr.Column():
gr.Markdown(
"""
### Training Details
**Architecture**: Fully Connected GAN
**Dataset**: MNIST (60,000 images)
**Epochs**: 200
**Batch Size**: 128
**Generator**:
- Input: 100-dim random vector
- Layers: 128 β 256 β 512 β 784
- Output: 28Γ28 grayscale image
**Discriminator**:
- Input: 28Γ28 image (784 dims)
- Layers: 512 β 256 β 1
- Output: Real/Fake probability
"""
)
with gr.Column():
gr.Markdown(
"""
### Training Results
**Loss Metrics** (Final):
- Discriminator Loss: ~0.32
- Generator Loss: ~1.99
**Training Evolution**:
- Epoch 1: Random noise
- Epoch 50: Faint structures
- Epoch 100: Recognizable digits
- Epoch 200: High-quality digits
The adversarial training successfully balanced both networks,
resulting in realistic digit generation.
"""
)
gr.Markdown("### Sample Outputs (Different Seeds)")
comparison_img = create_comparison_grid()
gr.Image(value=comparison_img, label="Generated Samples", type="pil")
gr.Markdown(
"""
---
**Tech Stack**: PyTorch, Gradio, NumPy | **Training**: Google Colab (GPU) | **Deployment**: Hugging Face Spaces
"""
)
if __name__ == "__main__":
demo.launch() |