MuseTalkVM / scripts /inference.py
Zhizhou Zhong
feat: windows infer & gradio (#312)
ba2abca unverified
import os
import cv2
import math
import copy
import torch
import glob
import shutil
import pickle
import argparse
import numpy as np
import subprocess
from tqdm import tqdm
from omegaconf import OmegaConf
from transformers import WhisperModel
import sys
from musetalk.utils.blending import get_image
from musetalk.utils.face_parsing import FaceParsing
from musetalk.utils.audio_processor import AudioProcessor
from musetalk.utils.utils import get_file_type, get_video_fps, datagen, load_all_model
from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
@torch.no_grad()
def main(args):
# Configure ffmpeg path
if not fast_check_ffmpeg():
print("Adding ffmpeg to PATH")
# Choose path separator based on operating system
path_separator = ';' if sys.platform == 'win32' else ':'
os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}"
if not fast_check_ffmpeg():
print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed")
# Set computing device
device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu")
# Load model weights
vae, unet, pe = load_all_model(
unet_model_path=args.unet_model_path,
vae_type=args.vae_type,
unet_config=args.unet_config,
device=device
)
timesteps = torch.tensor([0], device=device)
# Convert models to half precision if float16 is enabled
if args.use_float16:
pe = pe.half()
vae.vae = vae.vae.half()
unet.model = unet.model.half()
# Move models to specified device
pe = pe.to(device)
vae.vae = vae.vae.to(device)
unet.model = unet.model.to(device)
# Initialize audio processor and Whisper model
audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir)
weight_dtype = unet.model.dtype
whisper = WhisperModel.from_pretrained(args.whisper_dir)
whisper = whisper.to(device=device, dtype=weight_dtype).eval()
whisper.requires_grad_(False)
# Initialize face parser with configurable parameters based on version
if args.version == "v15":
fp = FaceParsing(
left_cheek_width=args.left_cheek_width,
right_cheek_width=args.right_cheek_width
)
else: # v1
fp = FaceParsing()
# Load inference configuration
inference_config = OmegaConf.load(args.inference_config)
print("Loaded inference config:", inference_config)
# Process each task
for task_id in inference_config:
try:
# Get task configuration
video_path = inference_config[task_id]["video_path"]
audio_path = inference_config[task_id]["audio_path"]
if "result_name" in inference_config[task_id]:
args.output_vid_name = inference_config[task_id]["result_name"]
# Set bbox_shift based on version
if args.version == "v15":
bbox_shift = 0 # v15 uses fixed bbox_shift
else:
bbox_shift = inference_config[task_id].get("bbox_shift", args.bbox_shift) # v1 uses config or default
# Set output paths
input_basename = os.path.basename(video_path).split('.')[0]
audio_basename = os.path.basename(audio_path).split('.')[0]
output_basename = f"{input_basename}_{audio_basename}"
# Create temporary directories
temp_dir = os.path.join(args.result_dir, f"{args.version}")
os.makedirs(temp_dir, exist_ok=True)
# Set result save paths
result_img_save_path = os.path.join(temp_dir, output_basename)
crop_coord_save_path = os.path.join(args.result_dir, "../", input_basename+".pkl")
os.makedirs(result_img_save_path, exist_ok=True)
# Set output video paths
if args.output_vid_name is None:
output_vid_name = os.path.join(temp_dir, output_basename + ".mp4")
else:
output_vid_name = os.path.join(temp_dir, args.output_vid_name)
output_vid_name_concat = os.path.join(temp_dir, output_basename + "_concat.mp4")
# Extract frames from source video
if get_file_type(video_path) == "video":
save_dir_full = os.path.join(temp_dir, input_basename)
os.makedirs(save_dir_full, exist_ok=True)
cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png"
os.system(cmd)
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]')))
fps = get_video_fps(video_path)
elif get_file_type(video_path) == "image":
input_img_list = [video_path]
fps = args.fps
elif os.path.isdir(video_path):
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
fps = args.fps
else:
raise ValueError(f"{video_path} should be a video file, an image file or a directory of images")
# Extract audio features
whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path)
whisper_chunks = audio_processor.get_whisper_chunk(
whisper_input_features,
device,
weight_dtype,
whisper,
librosa_length,
fps=fps,
audio_padding_length_left=args.audio_padding_length_left,
audio_padding_length_right=args.audio_padding_length_right,
)
# Preprocess input images
if os.path.exists(crop_coord_save_path) and args.use_saved_coord:
print("Using saved coordinates")
with open(crop_coord_save_path, 'rb') as f:
coord_list = pickle.load(f)
frame_list = read_imgs(input_img_list)
else:
print("Extracting landmarks... time-consuming operation")
coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift)
with open(crop_coord_save_path, 'wb') as f:
pickle.dump(coord_list, f)
print(f"Number of frames: {len(frame_list)}")
# Process each frame
input_latent_list = []
for bbox, frame in zip(coord_list, frame_list):
if bbox == coord_placeholder:
continue
x1, y1, x2, y2 = bbox
if args.version == "v15":
y2 = y2 + args.extra_margin
y2 = min(y2, frame.shape[0])
crop_frame = frame[y1:y2, x1:x2]
crop_frame = cv2.resize(crop_frame, (256,256), interpolation=cv2.INTER_LANCZOS4)
latents = vae.get_latents_for_unet(crop_frame)
input_latent_list.append(latents)
# Smooth first and last frames
frame_list_cycle = frame_list + frame_list[::-1]
coord_list_cycle = coord_list + coord_list[::-1]
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
# Batch inference
print("Starting inference")
video_num = len(whisper_chunks)
batch_size = args.batch_size
gen = datagen(
whisper_chunks=whisper_chunks,
vae_encode_latents=input_latent_list_cycle,
batch_size=batch_size,
delay_frame=0,
device=device,
)
res_frame_list = []
total = int(np.ceil(float(video_num) / batch_size))
# Execute inference
for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=total)):
audio_feature_batch = pe(whisper_batch)
latent_batch = latent_batch.to(dtype=unet.model.dtype)
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
recon = vae.decode_latents(pred_latents)
for res_frame in recon:
res_frame_list.append(res_frame)
# Pad generated images to original video size
print("Padding generated images to original video size")
for i, res_frame in enumerate(tqdm(res_frame_list)):
bbox = coord_list_cycle[i%(len(coord_list_cycle))]
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))])
x1, y1, x2, y2 = bbox
if args.version == "v15":
y2 = y2 + args.extra_margin
y2 = min(y2, frame.shape[0])
try:
res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1))
except:
continue
# Merge results with version-specific parameters
if args.version == "v15":
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp)
else:
combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=fp)
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png", combine_frame)
# Save prediction results
temp_vid_path = f"{temp_dir}/temp_{input_basename}_{audio_basename}.mp4"
cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {temp_vid_path}"
print("Video generation command:", cmd_img2video)
os.system(cmd_img2video)
cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {temp_vid_path} {output_vid_name}"
print("Audio combination command:", cmd_combine_audio)
os.system(cmd_combine_audio)
# Clean up temporary files
shutil.rmtree(result_img_save_path)
os.remove(temp_vid_path)
shutil.rmtree(save_dir_full)
if not args.saved_coord:
os.remove(crop_coord_save_path)
print(f"Results saved to {output_vid_name}")
except Exception as e:
print("Error occurred during processing:", e)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable")
parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use")
parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model")
parser.add_argument("--unet_config", type=str, default="./models/musetalk/config.json", help="Path to UNet configuration file")
parser.add_argument("--unet_model_path", type=str, default="./models/musetalkV15/unet.pth", help="Path to UNet model weights")
parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model")
parser.add_argument("--inference_config", type=str, default="configs/inference/test_img.yaml", help="Path to inference configuration file")
parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value")
parser.add_argument("--result_dir", default='./results', help="Directory for output results")
parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping")
parser.add_argument("--fps", type=int, default=25, help="Video frames per second")
parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio")
parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio")
parser.add_argument("--batch_size", type=int, default=8, help="Batch size for inference")
parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file")
parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time')
parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use')
parser.add_argument("--use_float16", action="store_true", help="Use float16 for faster inference")
parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode")
parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region")
parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region")
parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Model version to use")
args = parser.parse_args()
main(args)