Spaces:
Runtime error
Runtime error
| import os | |
| import cv2 | |
| import math | |
| import copy | |
| import torch | |
| import glob | |
| import shutil | |
| import pickle | |
| import argparse | |
| import numpy as np | |
| import subprocess | |
| from tqdm import tqdm | |
| from omegaconf import OmegaConf | |
| from transformers import WhisperModel | |
| import sys | |
| from musetalk.utils.blending import get_image | |
| from musetalk.utils.face_parsing import FaceParsing | |
| from musetalk.utils.audio_processor import AudioProcessor | |
| from musetalk.utils.utils import get_file_type, get_video_fps, datagen, load_all_model | |
| from musetalk.utils.preprocessing import get_landmark_and_bbox, read_imgs, coord_placeholder | |
| def fast_check_ffmpeg(): | |
| try: | |
| subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True) | |
| return True | |
| except: | |
| return False | |
| def main(args): | |
| # Configure ffmpeg path | |
| if not fast_check_ffmpeg(): | |
| print("Adding ffmpeg to PATH") | |
| # Choose path separator based on operating system | |
| path_separator = ';' if sys.platform == 'win32' else ':' | |
| os.environ["PATH"] = f"{args.ffmpeg_path}{path_separator}{os.environ['PATH']}" | |
| if not fast_check_ffmpeg(): | |
| print("Warning: Unable to find ffmpeg, please ensure ffmpeg is properly installed") | |
| # Set computing device | |
| device = torch.device(f"cuda:{args.gpu_id}" if torch.cuda.is_available() else "cpu") | |
| # Load model weights | |
| vae, unet, pe = load_all_model( | |
| unet_model_path=args.unet_model_path, | |
| vae_type=args.vae_type, | |
| unet_config=args.unet_config, | |
| device=device | |
| ) | |
| timesteps = torch.tensor([0], device=device) | |
| # Convert models to half precision if float16 is enabled | |
| if args.use_float16: | |
| pe = pe.half() | |
| vae.vae = vae.vae.half() | |
| unet.model = unet.model.half() | |
| # Move models to specified device | |
| pe = pe.to(device) | |
| vae.vae = vae.vae.to(device) | |
| unet.model = unet.model.to(device) | |
| # Initialize audio processor and Whisper model | |
| audio_processor = AudioProcessor(feature_extractor_path=args.whisper_dir) | |
| weight_dtype = unet.model.dtype | |
| whisper = WhisperModel.from_pretrained(args.whisper_dir) | |
| whisper = whisper.to(device=device, dtype=weight_dtype).eval() | |
| whisper.requires_grad_(False) | |
| # Initialize face parser with configurable parameters based on version | |
| if args.version == "v15": | |
| fp = FaceParsing( | |
| left_cheek_width=args.left_cheek_width, | |
| right_cheek_width=args.right_cheek_width | |
| ) | |
| else: # v1 | |
| fp = FaceParsing() | |
| # Load inference configuration | |
| inference_config = OmegaConf.load(args.inference_config) | |
| print("Loaded inference config:", inference_config) | |
| # Process each task | |
| for task_id in inference_config: | |
| try: | |
| # Get task configuration | |
| video_path = inference_config[task_id]["video_path"] | |
| audio_path = inference_config[task_id]["audio_path"] | |
| if "result_name" in inference_config[task_id]: | |
| args.output_vid_name = inference_config[task_id]["result_name"] | |
| # Set bbox_shift based on version | |
| if args.version == "v15": | |
| bbox_shift = 0 # v15 uses fixed bbox_shift | |
| else: | |
| bbox_shift = inference_config[task_id].get("bbox_shift", args.bbox_shift) # v1 uses config or default | |
| # Set output paths | |
| input_basename = os.path.basename(video_path).split('.')[0] | |
| audio_basename = os.path.basename(audio_path).split('.')[0] | |
| output_basename = f"{input_basename}_{audio_basename}" | |
| # Create temporary directories | |
| temp_dir = os.path.join(args.result_dir, f"{args.version}") | |
| os.makedirs(temp_dir, exist_ok=True) | |
| # Set result save paths | |
| result_img_save_path = os.path.join(temp_dir, output_basename) | |
| crop_coord_save_path = os.path.join(args.result_dir, "../", input_basename+".pkl") | |
| os.makedirs(result_img_save_path, exist_ok=True) | |
| # Set output video paths | |
| if args.output_vid_name is None: | |
| output_vid_name = os.path.join(temp_dir, output_basename + ".mp4") | |
| else: | |
| output_vid_name = os.path.join(temp_dir, args.output_vid_name) | |
| output_vid_name_concat = os.path.join(temp_dir, output_basename + "_concat.mp4") | |
| # Extract frames from source video | |
| if get_file_type(video_path) == "video": | |
| save_dir_full = os.path.join(temp_dir, input_basename) | |
| os.makedirs(save_dir_full, exist_ok=True) | |
| cmd = f"ffmpeg -v fatal -i {video_path} -start_number 0 {save_dir_full}/%08d.png" | |
| os.system(cmd) | |
| input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]'))) | |
| fps = get_video_fps(video_path) | |
| elif get_file_type(video_path) == "image": | |
| input_img_list = [video_path] | |
| fps = args.fps | |
| elif os.path.isdir(video_path): | |
| input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]')) | |
| input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) | |
| fps = args.fps | |
| else: | |
| raise ValueError(f"{video_path} should be a video file, an image file or a directory of images") | |
| # Extract audio features | |
| whisper_input_features, librosa_length = audio_processor.get_audio_feature(audio_path) | |
| whisper_chunks = audio_processor.get_whisper_chunk( | |
| whisper_input_features, | |
| device, | |
| weight_dtype, | |
| whisper, | |
| librosa_length, | |
| fps=fps, | |
| audio_padding_length_left=args.audio_padding_length_left, | |
| audio_padding_length_right=args.audio_padding_length_right, | |
| ) | |
| # Preprocess input images | |
| if os.path.exists(crop_coord_save_path) and args.use_saved_coord: | |
| print("Using saved coordinates") | |
| with open(crop_coord_save_path, 'rb') as f: | |
| coord_list = pickle.load(f) | |
| frame_list = read_imgs(input_img_list) | |
| else: | |
| print("Extracting landmarks... time-consuming operation") | |
| coord_list, frame_list = get_landmark_and_bbox(input_img_list, bbox_shift) | |
| with open(crop_coord_save_path, 'wb') as f: | |
| pickle.dump(coord_list, f) | |
| print(f"Number of frames: {len(frame_list)}") | |
| # Process each frame | |
| input_latent_list = [] | |
| for bbox, frame in zip(coord_list, frame_list): | |
| if bbox == coord_placeholder: | |
| continue | |
| x1, y1, x2, y2 = bbox | |
| if args.version == "v15": | |
| y2 = y2 + args.extra_margin | |
| y2 = min(y2, frame.shape[0]) | |
| crop_frame = frame[y1:y2, x1:x2] | |
| crop_frame = cv2.resize(crop_frame, (256,256), interpolation=cv2.INTER_LANCZOS4) | |
| latents = vae.get_latents_for_unet(crop_frame) | |
| input_latent_list.append(latents) | |
| # Smooth first and last frames | |
| frame_list_cycle = frame_list + frame_list[::-1] | |
| coord_list_cycle = coord_list + coord_list[::-1] | |
| input_latent_list_cycle = input_latent_list + input_latent_list[::-1] | |
| # Batch inference | |
| print("Starting inference") | |
| video_num = len(whisper_chunks) | |
| batch_size = args.batch_size | |
| gen = datagen( | |
| whisper_chunks=whisper_chunks, | |
| vae_encode_latents=input_latent_list_cycle, | |
| batch_size=batch_size, | |
| delay_frame=0, | |
| device=device, | |
| ) | |
| res_frame_list = [] | |
| total = int(np.ceil(float(video_num) / batch_size)) | |
| # Execute inference | |
| for i, (whisper_batch, latent_batch) in enumerate(tqdm(gen, total=total)): | |
| audio_feature_batch = pe(whisper_batch) | |
| latent_batch = latent_batch.to(dtype=unet.model.dtype) | |
| pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample | |
| recon = vae.decode_latents(pred_latents) | |
| for res_frame in recon: | |
| res_frame_list.append(res_frame) | |
| # Pad generated images to original video size | |
| print("Padding generated images to original video size") | |
| for i, res_frame in enumerate(tqdm(res_frame_list)): | |
| bbox = coord_list_cycle[i%(len(coord_list_cycle))] | |
| ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))]) | |
| x1, y1, x2, y2 = bbox | |
| if args.version == "v15": | |
| y2 = y2 + args.extra_margin | |
| y2 = min(y2, frame.shape[0]) | |
| try: | |
| res_frame = cv2.resize(res_frame.astype(np.uint8), (x2-x1, y2-y1)) | |
| except: | |
| continue | |
| # Merge results with version-specific parameters | |
| if args.version == "v15": | |
| combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], mode=args.parsing_mode, fp=fp) | |
| else: | |
| combine_frame = get_image(ori_frame, res_frame, [x1, y1, x2, y2], fp=fp) | |
| cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png", combine_frame) | |
| # Save prediction results | |
| temp_vid_path = f"{temp_dir}/temp_{input_basename}_{audio_basename}.mp4" | |
| cmd_img2video = f"ffmpeg -y -v warning -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=yuv420p -crf 18 {temp_vid_path}" | |
| print("Video generation command:", cmd_img2video) | |
| os.system(cmd_img2video) | |
| cmd_combine_audio = f"ffmpeg -y -v warning -i {audio_path} -i {temp_vid_path} {output_vid_name}" | |
| print("Audio combination command:", cmd_combine_audio) | |
| os.system(cmd_combine_audio) | |
| # Clean up temporary files | |
| shutil.rmtree(result_img_save_path) | |
| os.remove(temp_vid_path) | |
| shutil.rmtree(save_dir_full) | |
| if not args.saved_coord: | |
| os.remove(crop_coord_save_path) | |
| print(f"Results saved to {output_vid_name}") | |
| except Exception as e: | |
| print("Error occurred during processing:", e) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--ffmpeg_path", type=str, default="./ffmpeg-4.4-amd64-static/", help="Path to ffmpeg executable") | |
| parser.add_argument("--gpu_id", type=int, default=0, help="GPU ID to use") | |
| parser.add_argument("--vae_type", type=str, default="sd-vae", help="Type of VAE model") | |
| parser.add_argument("--unet_config", type=str, default="./models/musetalk/config.json", help="Path to UNet configuration file") | |
| parser.add_argument("--unet_model_path", type=str, default="./models/musetalkV15/unet.pth", help="Path to UNet model weights") | |
| parser.add_argument("--whisper_dir", type=str, default="./models/whisper", help="Directory containing Whisper model") | |
| parser.add_argument("--inference_config", type=str, default="configs/inference/test_img.yaml", help="Path to inference configuration file") | |
| parser.add_argument("--bbox_shift", type=int, default=0, help="Bounding box shift value") | |
| parser.add_argument("--result_dir", default='./results', help="Directory for output results") | |
| parser.add_argument("--extra_margin", type=int, default=10, help="Extra margin for face cropping") | |
| parser.add_argument("--fps", type=int, default=25, help="Video frames per second") | |
| parser.add_argument("--audio_padding_length_left", type=int, default=2, help="Left padding length for audio") | |
| parser.add_argument("--audio_padding_length_right", type=int, default=2, help="Right padding length for audio") | |
| parser.add_argument("--batch_size", type=int, default=8, help="Batch size for inference") | |
| parser.add_argument("--output_vid_name", type=str, default=None, help="Name of output video file") | |
| parser.add_argument("--use_saved_coord", action="store_true", help='Use saved coordinates to save time') | |
| parser.add_argument("--saved_coord", action="store_true", help='Save coordinates for future use') | |
| parser.add_argument("--use_float16", action="store_true", help="Use float16 for faster inference") | |
| parser.add_argument("--parsing_mode", default='jaw', help="Face blending parsing mode") | |
| parser.add_argument("--left_cheek_width", type=int, default=90, help="Width of left cheek region") | |
| parser.add_argument("--right_cheek_width", type=int, default=90, help="Width of right cheek region") | |
| parser.add_argument("--version", type=str, default="v15", choices=["v1", "v15"], help="Model version to use") | |
| args = parser.parse_args() | |
| main(args) | |