Spaces:
Sleeping
Sleeping
| from utils.skeleton import Skeleton | |
| from utils.quaternion import * | |
| from utils.motion_process import t2m_kinematic_chain, t2m_raw_offsets | |
| import torch | |
| import os | |
| n_raw_offsets = torch.from_numpy(t2m_raw_offsets) | |
| kinematic_chain = t2m_kinematic_chain | |
| l_idx1, l_idx2 = 5, 8 | |
| face_joint_indx = [2, 1, 17, 16] | |
| # Lazy loading of tgt_offsets - only needed when is_mesh=True | |
| _tgt_offsets_cache = None | |
| def _get_tgt_offsets(): | |
| """Lazily load target offsets for mesh processing. Only called when is_mesh=True.""" | |
| global _tgt_offsets_cache | |
| if _tgt_offsets_cache is None: | |
| example_data_path = os.path.join("datasets/HumanML3D/new_joints", "000021" + '.npy') | |
| if not os.path.exists(example_data_path): | |
| raise FileNotFoundError( | |
| f"Example data file not found: {example_data_path}\n" | |
| "This file is only needed for mesh-level motion generation (is_mesh=True).\n" | |
| "For regular text-to-motion generation, use is_mesh=False." | |
| ) | |
| example_data = np.load(example_data_path) | |
| example_data = example_data.reshape(len(example_data), -1, 3) | |
| example_data = torch.from_numpy(example_data) | |
| tgt_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu') | |
| _tgt_offsets_cache = tgt_skel.get_offsets_joints(example_data[0]) | |
| return _tgt_offsets_cache | |
| l_idx1, l_idx2 = 5, 8 | |
| fid_r, fid_l = [8, 11], [7, 10] | |
| r_hip, l_hip = 2, 1 | |
| joints_num = 22 | |
| def uniform_skeleton(positions, target_offset): | |
| src_skel = Skeleton(n_raw_offsets, kinematic_chain, 'cpu') | |
| src_offset = src_skel.get_offsets_joints(torch.from_numpy(positions[0])) | |
| src_offset = src_offset.numpy() | |
| tgt_offset = target_offset.numpy() | |
| # print(src_offset) | |
| # print(tgt_offset) | |
| '''Calculate Scale Ratio as the ratio of legs''' | |
| src_leg_len = np.abs(src_offset[l_idx1]).max() + np.abs(src_offset[l_idx2]).max() | |
| tgt_leg_len = np.abs(tgt_offset[l_idx1]).max() + np.abs(tgt_offset[l_idx2]).max() | |
| scale_rt = tgt_leg_len / src_leg_len | |
| # print(scale_rt) | |
| src_root_pos = positions[:, 0] | |
| tgt_root_pos = src_root_pos * scale_rt | |
| '''Inverse Kinematics''' | |
| quat_params = src_skel.inverse_kinematics_np(positions, face_joint_indx) | |
| # print(quat_params.shape) | |
| '''Forward Kinematics''' | |
| src_skel.set_offset(target_offset) | |
| new_joints = src_skel.forward_kinematics_np(quat_params, tgt_root_pos) | |
| return new_joints | |
| def process_file(positions, feet_thre, is_mesh=False): | |
| # (seq_len, joints_num, 3) | |
| # '''Down Sample''' | |
| # positions = positions[::ds_num] | |
| if is_mesh: | |
| '''Uniform Skeleton''' | |
| tgt_offsets = _get_tgt_offsets() # Lazy load only when needed | |
| positions = uniform_skeleton(positions, tgt_offsets) | |
| '''Put on Floor''' | |
| floor_height = positions.min(axis=0).min(axis=0)[1] | |
| positions[:, :, 1] -= floor_height | |
| # print(floor_height) | |
| # plot_3d_motion("./positions_1.mp4", kinematic_chain, positions, 'title', fps=20) | |
| '''XZ at origin''' | |
| root_pos_init = positions[0] | |
| root_pose_init_xz = root_pos_init[0] * np.array([1, 0, 1]) | |
| positions = positions - root_pose_init_xz | |
| # '''Move the first pose to origin ''' | |
| # root_pos_init = positions[0] | |
| # positions = positions - root_pos_init[0] | |
| '''All initially face Z+''' | |
| r_hip, l_hip, sdr_r, sdr_l = face_joint_indx | |
| across1 = root_pos_init[r_hip] - root_pos_init[l_hip] | |
| across2 = root_pos_init[sdr_r] - root_pos_init[sdr_l] | |
| across = across1 + across2 | |
| across = across / np.sqrt((across ** 2).sum(axis=-1))[..., np.newaxis] | |
| # forward (3,), rotate around y-axis | |
| forward_init = np.cross(np.array([[0, 1, 0]]), across, axis=-1) | |
| # forward (3,) | |
| forward_init = forward_init / np.sqrt((forward_init ** 2).sum(axis=-1))[..., np.newaxis] | |
| # print(forward_init) | |
| target = np.array([[0, 0, 1]]) | |
| root_quat_init = qbetween_np(forward_init, target) | |
| root_quat_init = np.ones(positions.shape[:-1] + (4,)) * root_quat_init | |
| positions_b = positions.copy() | |
| positions = qrot_np(root_quat_init, positions) | |
| # plot_3d_motion("./positions_2.mp4", kinematic_chain, positions, 'title', fps=20) | |
| '''New ground truth positions''' | |
| global_positions = positions.copy() | |
| # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') | |
| # plt.plot(positions[:, 0, 0], positions[:, 0, 2], marker='o', color='r') | |
| # plt.xlabel('x') | |
| # plt.ylabel('z') | |
| # plt.axis('equal') | |
| # plt.show() | |
| """ Get Foot Contacts """ | |
| def foot_detect(positions, thres): | |
| velfactor, heightfactor = np.array([thres, thres]), np.array([3.0, 2.0]) | |
| feet_l_x = (positions[1:, fid_l, 0] - positions[:-1, fid_l, 0]) ** 2 | |
| feet_l_y = (positions[1:, fid_l, 1] - positions[:-1, fid_l, 1]) ** 2 | |
| feet_l_z = (positions[1:, fid_l, 2] - positions[:-1, fid_l, 2]) ** 2 | |
| # feet_l_h = positions[:-1,fid_l,1] | |
| # feet_l = (((feet_l_x + feet_l_y + feet_l_z) < velfactor) & (feet_l_h < heightfactor)).astype(np.float) | |
| feet_l = ((feet_l_x + feet_l_y + feet_l_z) < velfactor).astype(np.float32) | |
| feet_r_x = (positions[1:, fid_r, 0] - positions[:-1, fid_r, 0]) ** 2 | |
| feet_r_y = (positions[1:, fid_r, 1] - positions[:-1, fid_r, 1]) ** 2 | |
| feet_r_z = (positions[1:, fid_r, 2] - positions[:-1, fid_r, 2]) ** 2 | |
| # feet_r_h = positions[:-1,fid_r,1] | |
| # feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor) & (feet_r_h < heightfactor)).astype(np.float) | |
| feet_r = (((feet_r_x + feet_r_y + feet_r_z) < velfactor)).astype(np.float32) | |
| return feet_l, feet_r | |
| # | |
| feet_l, feet_r = foot_detect(positions, feet_thre) | |
| # feet_l, feet_r = foot_detect(positions, 0.002) | |
| '''Quaternion and Cartesian representation''' | |
| r_rot = None | |
| def get_rifke(positions): | |
| '''Local pose''' | |
| positions[..., 0] -= positions[:, 0:1, 0] | |
| positions[..., 2] -= positions[:, 0:1, 2] | |
| '''All pose face Z+''' | |
| positions = qrot_np(np.repeat(r_rot[:, None], positions.shape[1], axis=1), positions) | |
| return positions | |
| def get_quaternion(positions): | |
| skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") | |
| # (seq_len, joints_num, 4) | |
| quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=False) | |
| '''Fix Quaternion Discontinuity''' | |
| quat_params = qfix(quat_params) | |
| # (seq_len, 4) | |
| r_rot = quat_params[:, 0].copy() | |
| # print(r_rot[0]) | |
| '''Root Linear Velocity''' | |
| # (seq_len - 1, 3) | |
| velocity = (positions[1:, 0] - positions[:-1, 0]).copy() | |
| # print(r_rot.shape, velocity.shape) | |
| velocity = qrot_np(r_rot[1:], velocity) | |
| '''Root Angular Velocity''' | |
| # (seq_len - 1, 4) | |
| r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) | |
| quat_params[1:, 0] = r_velocity | |
| # (seq_len, joints_num, 4) | |
| return quat_params, r_velocity, velocity, r_rot | |
| def get_cont6d_params(positions): | |
| skel = Skeleton(n_raw_offsets, kinematic_chain, "cpu") | |
| # (seq_len, joints_num, 4) | |
| quat_params = skel.inverse_kinematics_np(positions, face_joint_indx, smooth_forward=True) | |
| '''Quaternion to continuous 6D''' | |
| cont_6d_params = quaternion_to_cont6d_np(quat_params) | |
| # (seq_len, 4) | |
| r_rot = quat_params[:, 0].copy() | |
| # print(r_rot[0]) | |
| '''Root Linear Velocity''' | |
| # (seq_len - 1, 3) | |
| velocity = (positions[1:, 0] - positions[:-1, 0]).copy() | |
| # print(r_rot.shape, velocity.shape) | |
| velocity = qrot_np(r_rot[1:], velocity) | |
| '''Root Angular Velocity''' | |
| # (seq_len - 1, 4) | |
| r_velocity = qmul_np(r_rot[1:], qinv_np(r_rot[:-1])) | |
| # (seq_len, joints_num, 4) | |
| return cont_6d_params, r_velocity, velocity, r_rot | |
| cont_6d_params, r_velocity, velocity, r_rot = get_cont6d_params(positions) | |
| positions = get_rifke(positions) | |
| # trejec = np.cumsum(np.concatenate([np.array([[0, 0, 0]]), velocity], axis=0), axis=0) | |
| # r_rotations, r_pos = recover_ric_glo_np(r_velocity, velocity[:, [0, 2]]) | |
| # plt.plot(positions_b[:, 0, 0], positions_b[:, 0, 2], marker='*') | |
| # plt.plot(ground_positions[:, 0, 0], ground_positions[:, 0, 2], marker='o', color='r') | |
| # plt.plot(trejec[:, 0], trejec[:, 2], marker='^', color='g') | |
| # plt.plot(r_pos[:, 0], r_pos[:, 2], marker='s', color='y') | |
| # plt.xlabel('x') | |
| # plt.ylabel('z') | |
| # plt.axis('equal') | |
| # plt.show() | |
| '''Root height''' | |
| root_y = positions[:, 0, 1:2] | |
| '''Root rotation and linear velocity''' | |
| # (seq_len-1, 1) rotation velocity along y-axis | |
| # (seq_len-1, 2) linear velovity on xz plane | |
| r_velocity = np.arcsin(r_velocity[:, 2:3]) | |
| l_velocity = velocity[:, [0, 2]] | |
| # print(r_velocity.shape, l_velocity.shape, root_y.shape) | |
| root_data = np.concatenate([r_velocity, l_velocity, root_y[:-1]], axis=-1) | |
| '''Get Joint Rotation Representation''' | |
| # (seq_len, (joints_num-1) *6) quaternion for skeleton joints | |
| rot_data = cont_6d_params[:, 1:].reshape(len(cont_6d_params), -1) | |
| '''Get Joint Rotation Invariant Position Represention''' | |
| # (seq_len, (joints_num-1)*3) local joint position | |
| ric_data = positions[:, 1:].reshape(len(positions), -1) | |
| '''Get Joint Velocity Representation''' | |
| # (seq_len-1, joints_num*3) | |
| local_vel = qrot_np(np.repeat(r_rot[:-1, None], global_positions.shape[1], axis=1), | |
| global_positions[1:] - global_positions[:-1]) | |
| local_vel = local_vel.reshape(len(local_vel), -1) | |
| data = root_data | |
| data = np.concatenate([data, ric_data[:-1]], axis=-1) | |
| data = np.concatenate([data, rot_data[:-1]], axis=-1) | |
| # print(data.shape, local_vel.shape) | |
| data = np.concatenate([data, local_vel], axis=-1) | |
| data = np.concatenate([data, feet_l, feet_r], axis=-1) | |
| return data, global_positions, positions, l_velocity | |
| def back_process(data, is_mesh=False): | |
| data, ground_positions, positions, l_velocity = process_file(data, 0.002, is_mesh=is_mesh) | |
| return data[:, :67] | |