metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:971
- loss:OnlineContrastiveLoss
widget:
- source_sentence: How to bake a pie?
sentences:
- Steps to bake a pie
- What are the ingredients of pizza?
- Steps to draft a business plan
- source_sentence: What are the benefits of meditation?
sentences:
- What color do yellow and blue make?
- Can you help me understand this recipe?
- What are the benefits of yoga?
- source_sentence: What is the capital of Canada?
sentences:
- What time does the concert start?
- Current President of the USA
- Capital city of Canada
- source_sentence: Share info about Shopify
sentences:
- Who discovered insulin?
- Tell me about Shopify
- Inventor of the telephone
- source_sentence: What is the boiling point of water at sea level?
sentences:
- What is the melting point of ice at sea level?
- Can you recommend a good hotel nearby?
- Can you tell me a joke?
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.8683127572016461
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.861210286617279
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8620689655172414
name: Cosine F1
- type: cosine_f1_threshold
value: 0.861210286617279
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8064516129032258
name: Cosine Precision
- type: cosine_recall
value: 0.9259259259259259
name: Cosine Recall
- type: cosine_ap
value: 0.922798423408038
name: Cosine Ap
- type: dot_accuracy
value: 0.8683127572016461
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8612103462219238
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8620689655172414
name: Dot F1
- type: dot_f1_threshold
value: 0.8612103462219238
name: Dot F1 Threshold
- type: dot_precision
value: 0.8064516129032258
name: Dot Precision
- type: dot_recall
value: 0.9259259259259259
name: Dot Recall
- type: dot_ap
value: 0.922798423408038
name: Dot Ap
- type: manhattan_accuracy
value: 0.8641975308641975
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 7.667797565460205
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8558951965065502
name: Manhattan F1
- type: manhattan_f1_threshold
value: 8.183371543884277
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8099173553719008
name: Manhattan Precision
- type: manhattan_recall
value: 0.9074074074074074
name: Manhattan Recall
- type: manhattan_ap
value: 0.9202233146158133
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8683127572016461
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5268579721450806
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8620689655172414
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5268579721450806
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8064516129032258
name: Euclidean Precision
- type: euclidean_recall
value: 0.9259259259259259
name: Euclidean Recall
- type: euclidean_ap
value: 0.922798423408038
name: Euclidean Ap
- type: max_accuracy
value: 0.8683127572016461
name: Max Accuracy
- type: max_accuracy_threshold
value: 7.667797565460205
name: Max Accuracy Threshold
- type: max_f1
value: 0.8620689655172414
name: Max F1
- type: max_f1_threshold
value: 8.183371543884277
name: Max F1 Threshold
- type: max_precision
value: 0.8099173553719008
name: Max Precision
- type: max_recall
value: 0.9259259259259259
name: Max Recall
- type: max_ap
value: 0.922798423408038
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.8683127572016461
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.861210286617279
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.8620689655172414
name: Cosine F1
- type: cosine_f1_threshold
value: 0.861210286617279
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.8064516129032258
name: Cosine Precision
- type: cosine_recall
value: 0.9259259259259259
name: Cosine Recall
- type: cosine_ap
value: 0.922798423408038
name: Cosine Ap
- type: dot_accuracy
value: 0.8683127572016461
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8612103462219238
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.8620689655172414
name: Dot F1
- type: dot_f1_threshold
value: 0.8612103462219238
name: Dot F1 Threshold
- type: dot_precision
value: 0.8064516129032258
name: Dot Precision
- type: dot_recall
value: 0.9259259259259259
name: Dot Recall
- type: dot_ap
value: 0.922798423408038
name: Dot Ap
- type: manhattan_accuracy
value: 0.8641975308641975
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 7.667797565460205
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.8558951965065502
name: Manhattan F1
- type: manhattan_f1_threshold
value: 8.183371543884277
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.8099173553719008
name: Manhattan Precision
- type: manhattan_recall
value: 0.9074074074074074
name: Manhattan Recall
- type: manhattan_ap
value: 0.9202233146158133
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.8683127572016461
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.5268579721450806
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.8620689655172414
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5268579721450806
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.8064516129032258
name: Euclidean Precision
- type: euclidean_recall
value: 0.9259259259259259
name: Euclidean Recall
- type: euclidean_ap
value: 0.922798423408038
name: Euclidean Ap
- type: max_accuracy
value: 0.8683127572016461
name: Max Accuracy
- type: max_accuracy_threshold
value: 7.667797565460205
name: Max Accuracy Threshold
- type: max_f1
value: 0.8620689655172414
name: Max F1
- type: max_f1_threshold
value: 8.183371543884277
name: Max F1 Threshold
- type: max_precision
value: 0.8099173553719008
name: Max Precision
- type: max_recall
value: 0.9259259259259259
name: Max Recall
- type: max_ap
value: 0.922798423408038
name: Max Ap
SentenceTransformer based on intfloat/multilingual-e5-small
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/multilingual-e5-small-pairclass-1")
# Run inference
sentences = [
'What is the boiling point of water at sea level?',
'What is the melting point of ice at sea level?',
'Can you recommend a good hotel nearby?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.8683 |
| cosine_accuracy_threshold | 0.8612 |
| cosine_f1 | 0.8621 |
| cosine_f1_threshold | 0.8612 |
| cosine_precision | 0.8065 |
| cosine_recall | 0.9259 |
| cosine_ap | 0.9228 |
| dot_accuracy | 0.8683 |
| dot_accuracy_threshold | 0.8612 |
| dot_f1 | 0.8621 |
| dot_f1_threshold | 0.8612 |
| dot_precision | 0.8065 |
| dot_recall | 0.9259 |
| dot_ap | 0.9228 |
| manhattan_accuracy | 0.8642 |
| manhattan_accuracy_threshold | 7.6678 |
| manhattan_f1 | 0.8559 |
| manhattan_f1_threshold | 8.1834 |
| manhattan_precision | 0.8099 |
| manhattan_recall | 0.9074 |
| manhattan_ap | 0.9202 |
| euclidean_accuracy | 0.8683 |
| euclidean_accuracy_threshold | 0.5269 |
| euclidean_f1 | 0.8621 |
| euclidean_f1_threshold | 0.5269 |
| euclidean_precision | 0.8065 |
| euclidean_recall | 0.9259 |
| euclidean_ap | 0.9228 |
| max_accuracy | 0.8683 |
| max_accuracy_threshold | 7.6678 |
| max_f1 | 0.8621 |
| max_f1_threshold | 8.1834 |
| max_precision | 0.8099 |
| max_recall | 0.9259 |
| max_ap | 0.9228 |
Binary Classification
- Dataset:
pair-class-test - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.8683 |
| cosine_accuracy_threshold | 0.8612 |
| cosine_f1 | 0.8621 |
| cosine_f1_threshold | 0.8612 |
| cosine_precision | 0.8065 |
| cosine_recall | 0.9259 |
| cosine_ap | 0.9228 |
| dot_accuracy | 0.8683 |
| dot_accuracy_threshold | 0.8612 |
| dot_f1 | 0.8621 |
| dot_f1_threshold | 0.8612 |
| dot_precision | 0.8065 |
| dot_recall | 0.9259 |
| dot_ap | 0.9228 |
| manhattan_accuracy | 0.8642 |
| manhattan_accuracy_threshold | 7.6678 |
| manhattan_f1 | 0.8559 |
| manhattan_f1_threshold | 8.1834 |
| manhattan_precision | 0.8099 |
| manhattan_recall | 0.9074 |
| manhattan_ap | 0.9202 |
| euclidean_accuracy | 0.8683 |
| euclidean_accuracy_threshold | 0.5269 |
| euclidean_f1 | 0.8621 |
| euclidean_f1_threshold | 0.5269 |
| euclidean_precision | 0.8065 |
| euclidean_recall | 0.9259 |
| euclidean_ap | 0.9228 |
| max_accuracy | 0.8683 |
| max_accuracy_threshold | 7.6678 |
| max_f1 | 0.8621 |
| max_f1_threshold | 8.1834 |
| max_precision | 0.8099 |
| max_recall | 0.9259 |
| max_ap | 0.9228 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 971 training samples
- Columns:
label,sentence1, andsentence2 - Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type int string string details - 0: ~48.61%
- 1: ~51.39%
- min: 6 tokens
- mean: 10.82 tokens
- max: 22 tokens
- min: 4 tokens
- mean: 10.12 tokens
- max: 22 tokens
- Samples:
label sentence1 sentence2 1How many bones are in the human body?Total number of bones in an adult human body0What is the largest lake in North America?What is the largest river in North America?0What is the capital of New Zealand?What is the capital of Australia? - Loss:
OnlineContrastiveLoss
Evaluation Dataset
Unnamed Dataset
- Size: 243 evaluation samples
- Columns:
label,sentence1, andsentence2 - Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type int string string details - 0: ~55.56%
- 1: ~44.44%
- min: 6 tokens
- mean: 10.55 tokens
- max: 22 tokens
- min: 4 tokens
- mean: 10.09 tokens
- max: 20 tokens
- Samples:
label sentence1 sentence2 1What are the different types of renewable energy?What are the various forms of renewable energy?1Who discovered gravity?Gravity discoverer0Can you help me understand this report?Can you help me write this report? - Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 32gradient_accumulation_steps: 2learning_rate: 1e-06weight_decay: 0.01num_train_epochs: 12lr_scheduler_type: reduce_lr_on_plateauwarmup_ratio: 0.1load_best_model_at_end: Trueoptim: adamw_torch_fused
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 2eval_accumulation_steps: Nonelearning_rate: 1e-06weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 12max_steps: -1lr_scheduler_type: reduce_lr_on_plateaulr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
|---|---|---|---|---|
| 0 | 0 | - | 0.6426 | - |
| 0.9677 | 15 | 4.5769 | 0.6975 | - |
| 2.0 | 31 | 3.8280 | 0.7466 | - |
| 2.9677 | 46 | 3.1501 | 0.7848 | - |
| 4.0 | 62 | 2.8302 | 0.8220 | - |
| 4.9677 | 77 | 2.4840 | 0.8469 | - |
| 6.0 | 93 | 2.2746 | 0.8692 | - |
| 6.9677 | 108 | 2.0923 | 0.8835 | - |
| 8.0 | 124 | 1.9265 | 0.8962 | - |
| 8.9677 | 139 | 1.8076 | 0.9048 | - |
| 10.0 | 155 | 1.7673 | 0.9130 | - |
| 10.9677 | 170 | 1.6653 | 0.9201 | - |
| 11.6129 | 180 | 1.5428 | 0.9228 | 0.9228 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.32.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}