whisper-large-turbo-finetune
This model is a fine-tuned version of adriszmar/whisper-large-v3-turbo-es on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0337
- Wer: 6.6030
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|---|---|---|---|---|
| 0.5524 | 0.4324 | 200 | 0.4671 | 36.8885 |
| 0.3595 | 0.8649 | 400 | 0.3303 | 27.6716 |
| 0.219 | 1.2962 | 600 | 0.2166 | 26.2860 |
| 0.1551 | 1.7286 | 800 | 0.1712 | 19.2001 |
| 0.0996 | 2.16 | 1000 | 0.1329 | 18.1923 |
| 0.0717 | 2.5924 | 1200 | 0.1003 | 14.0248 |
| 0.0563 | 3.0238 | 1400 | 0.0790 | 12.8280 |
| 0.0338 | 3.4562 | 1600 | 0.0630 | 11.9253 |
| 0.0276 | 3.8886 | 1800 | 0.0480 | 6.6240 |
| 0.0161 | 4.32 | 2000 | 0.0337 | 6.6030 |
| 0.0104 | 4.7524 | 2200 | 0.0267 | 4.8604 |
| 0.0058 | 5.1838 | 2400 | 0.0208 | 4.9339 |
| 0.0032 | 5.6162 | 2600 | 0.0177 | 3.1388 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 113
Model tree for tangering-ai/whisper-large-turbo-finetune
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo
Finetuned
adriszmar/whisper-large-v3-turbo-es